Sketching Asynchronous Streams Over a Sliding Window

Srikanta Tirthapura (Iowa State University)
Bojian Xu (Iowa State University)
Costas Busch (Rensselaer Polytechnic Institute)

PODC 2006, Denver, CO
Data Stream Processing

- Example I: All packets on a network link, maintain the number of different ip sources in the last one hour

- Example II: Large database, continuously maintain
 - Frequency Moments
 - Median of all the elements

- Processing Requirements
 - One pass processing
 - Small workspace: poly-logarithmic in the size of data
 - Fast processing time per element
 - Approximate answers are ok
Data Stream Model

• Data stream: \((v_0, t_0), (v_1, t_1), (v_2, t_2), \ldots\)
 – \(v_i\): observed value
 – \(t_i\): timestamp of creation

• Synchronous stream
 – \(t_i\): In ascending order

• Asynchronous stream
 – \(t_i\): No order guaranteed
Why Asynchronous Data Streams?

Network delay & multi-path routing

Merge w/o control
Recent Elements

- More interested in elements with recent timestamps
- Example: Network monitoring

```
129.186.9.17  11:59 7/24/6   
129.186.59.7   11:12 7/23/6   
129.186.13.9   11:45 7/23/06  
129.186.5.63   12:01 7/24/6   
```

Current time = 12:03 7/24/6

Interesting: within last 5 mins

Not interesting: out of last 5 mins
Timestamp Sliding Window

- Timestamp **sliding** window over stream S:

\[\{ < v_i, t_i > | < v_i, t_i > \in S, t_i \in [c - W, c] \} \]

- c: current time
- W: window size
Sliding Window - example

- Window size = 10

Current time = 17

Stream:

5,2 19,7 7,8 5,6 22,8

Current window
Sliding Window - example

- Window size = 10

Current time=18

Stream:

5,2 19,7 7,8 5,6 22,8 9,11

Current window
Our Contributions

• First study of aggregate computation over recent elements of an asynchronous data stream

• Randomized algorithms for estimating the sum and median over a sliding window of an asynchronous stream
 – Workspace much smaller than size of window
 – Fast processing time per item

• Distributed aggregation over the union of asynchronous streams
Outline

• Problem: Sum of Recent Elements
• Intuition & Algorithm
• Union of Streams
Problem

- **Network monitoring**

 Current time = 12:03 7/24/6

 How to continuously maintain the average size of interesting packets? e.g. \((423 + 101)/2 = 262\)

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Timestamp</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>129.186.9.17</td>
<td>11:59 7/24/6</td>
<td>423</td>
</tr>
<tr>
<td>129.186.59.7</td>
<td>11:12 7/23/6</td>
<td>32</td>
</tr>
<tr>
<td>129.186.13.9</td>
<td>11:45 7/23/06</td>
<td>145</td>
</tr>
<tr>
<td>129.186.5.63</td>
<td>12:01 7/24/6</td>
<td>101</td>
</tr>
</tbody>
</table>

Interesting: within last 5 mins

Not interesting: out of last 5 mins
Sum Problem

• Given:
 – Data Stream S: (v_0,t_0), (v_1,t_1), (v_2,t_2), ...
 – Max sliding window size W
 – User inputs: ε, δ.

• Task: For all $w \leq W$, continuously maintain an $(\varepsilon-\delta)$-estimate of $X = \sum_{(v,t) \in S} v$ for all $t \in [c-w,c]$.

An $(\varepsilon-\delta)$-estimate for X is a random variable Y, such that $\Pr[|Y-X| > \varepsilon X] < \delta$.
Previous Work

Algorithm for Sum

• Problem: Estimate the sum of elements within sliding window

• Random Sampling
 – Randomly sample elements of this set
 – Compute sum of random sample
 – Multiply by appropriate scaling factor
Intuition I

• To estimate the size of a set, sample the universe until enough elements chosen from set

By Chernoff bound for an \((\varepsilon-\delta)\)-estimate,

\[\Pr \left[\text{With Green Eyes} \right] > \frac{\log(1/\delta)}{\varepsilon^2} \]
Intuition II

- Maintain many samples of fixed-size: $\alpha = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$

- Each element is randomly selected into the samples from higher level to lower level, until it fails at some sample or the lowest sample is reached.

- Each sample keeps α most recent elements.

$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
Intuition III

- Items with larger values should have more weight to be selected into the sample.

For element \((v, t)\):

- If \((vp \geq 1)\) → insert \((vp, t)\) into the sample. \textbf{(Deterministic insertion)}
- If \((vp < 1)\) → insert \((1, t)\) into the sample w.p. \(vp\). \textbf{(Random insertion)}
Algorithm for “Sum”

Current Time: 17

Stream: (2,15), (3,16), (2,12), (3,11), (2,19) ...

c = 17, W=10, [c-W, c]=[7, 17]

Largest timestamp of all the elements discarded from the sample

Sample 0

Sketch
Algorithm for “Sum”

Current Time: 17, 18, 20, 22, 22

Stream: (2,15), (3,16), (2,12), (3,11), (2,19) ...

Level 0
\(t_0 = -1 \)

Level 1
\(t_1 = -1 \)

Level 2
\(t_2 = -1 \)

Level 3
\(t_3 = -1 \)

\(c = 17, W=10, [c-W, c]=[7, 17] \)

If \((vp \geq 1) \) \(\rightarrow \) insert \((vp, t) \) into the sample. \hspace{1cm} \text{(Deterministic insertion)}
If \((vp < 1) \) \(\rightarrow \) insert \((1, t) \) into the sample w.p. \(vp \). \hspace{1cm} \text{(Random insertion)}
Algorithm for “Sum”

Current Time: (2,15), (3,16), (2,12), (3,11), (2,19) ...

Stream: 17 \rightarrow 18 \rightarrow 20 \rightarrow 22 \rightarrow 22

Level 0
\[t_0 = -1 \]
Level 1
\[t_1 = -1 \]
Level 2
\[t_2 = -1 \]
Level 3
\[t_3 = -1 \]

\(c = 18, \ W=10, \ [c-W, c]=[8, 18] \)

If \(vp \geq 1 \) \(\Rightarrow \) insert \((vp, t) \) into the sample. (Deterministic insertion)
If \(vp < 1 \) \(\Rightarrow \) insert \((1, t) \) into the sample w.p. \(vp \). (Random insertion)
Algorithm for “Sum”

Current Time: 17, 18, 20, 22, 22

Stream: (2,15), (3,16), (2,12), (3,11), (2,19) ...

c = 20, W=10, [c-W, c]=[10, 20]

If (vp≥1) → insert (vp, t) into the sample. (Deterministic insertion)
If (vp<1) → insert(1,t) into the sample w.p. vp. (Random insertion)
Algorithm for “Sum”

Current Time: \(t_0 = -1\), \(t_1 = -1\), \(t_2 = -1\), \(t_3 = -1\)

Stream: \((2,15), (3,16), (2,12), (3,11), (2,19) \ldots\)

\[c = 22, \ W=10, \ [c-W, c]=[12, 22]\]

<table>
<thead>
<tr>
<th>Level</th>
<th>(t_i)</th>
<th>Stream</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-1)</td>
<td>((2,12), (2,15), (3,16))</td>
<td>(1/4)</td>
</tr>
<tr>
<td>1</td>
<td>(-1)</td>
<td>((1,12), (1,15), (1.5,16))</td>
<td>(1/2)</td>
</tr>
<tr>
<td>2</td>
<td>(-1)</td>
<td>((1,15), (1,16))</td>
<td>(1/4)</td>
</tr>
<tr>
<td>3</td>
<td>(-1)</td>
<td>((1,16))</td>
<td>(1/8)</td>
</tr>
</tbody>
</table>

Out of current window

\(p=1\)
Algorithm for “Sum”

Current Time: \(t_0 = -1 \), \(t_1 = -1 \), \(t_2 = -1 \), \(t_3 = -1 \)

Stream: \((2,15), (3,16), (2,12), (3,11), (2,19) \ldots\)

\(c = 22, \ W = 10, \ [c-W, c] = [12, 22] \)

If \(\vp \geq 1 \) → insert \((\vp, t)\) into the sample. \(\text{(Deterministic insertion)}\)
If \(\vp < 1 \) → insert \((1, t)\) into the sample w.p. \(\vp \). \(\text{(Random insertion)}\)
Algorithm for “Sum”

Current Time: $t_0 = 12$, $t_1 = 12$, $t_2 = -1$, $t_3 = -1$

Stream: $(2,15), (3,16), (2,12), (3,11), (2,19) \ldots$

$L_{\max} = 22$, $W = 10$, $[c-W, c] = [12, 22]$

If $(v_p \geq 1) \rightarrow$ insert (v_p, t) into the sample. *(Deterministic insertion)*

If $(v_p < 1) \rightarrow$ insert $(1, t)$ into the sample w.p. v_p. *(Random insertion)*
Algorithm for “Sum”

Current Time: \(t_0 = 12 \), \(t_1 = 12 \), \(t_2 = -1 \), \(t_3 = -1 \)

Stream: \((2,15), (3,16), (2,12), (3,11), (2,19) \)...

\(c = 22 \), \(W = 10 \), \([c-W, c] = [12, 22] \)

- Level 0 & 1 overflowed
- Use Level 2

\[\text{Estimate of sum} = (1+1) \times 2^2 = 8 \]
\[\text{Real value} = 2 + 3 + 2 + 2 = 9 \]
Algorithm Complexity

• **Space complexity:** \(O\left(\frac{1}{\varepsilon^2} \log\left(\frac{1}{\delta}\right) \log m \log V_{\text{max}}\right) \)

• **Time complexity**

 – Expected time for processing each item: \(O\left(\log V_{\text{max}} \left(\log \log \frac{1}{\delta} + \log \frac{1}{\varepsilon}\right)\right) \)

 – Worst case time for processing each item: \(O\left(\log V_{\text{max}} \left(\log \log \frac{1}{\delta} + \log \frac{1}{\varepsilon}\right)\right) \)

 – Time for answering a query: \(O\left(\log \log V_{\text{max}} + \frac{\log(1/\delta)}{\varepsilon^2}\right) \)

\(V_{\text{max}} \): Upper bound of the sum of all items within the sliding window

\(m \): Upper bound of the value of any single item.
Union of Streams

Why union of streams?

Sketch forwarding reduces the message complexity.

Sketch is Compact & Lossless
Each sample keeps 3 most recent items.
Proof

- **Deterministic insertion** + **Random insertion**

- **Accurate portion**
- **0-1 random variables**

Error bounded

If \((v_p \geq 1) \) → insert \((v_p, t)\) into the sample.
(Deterministic insertion)

If \((v_p < 1) \) → insert \((1, t)\) into the sample w.p. \(v_p \).
(Random insertion)
Conclusions

• Aggregates on a sliding window over asynchronous streams

• First algorithms for the sum and median

• Distributed aggregation over the union of asynchronous streams
Future Work

• Deterministic algorithm
• Lower bounds
Thank You