Dynamic Programming

• Sequence of decisions.
• Problem state.
• Principle of optimality.

Sequence Of Decisions

• As in the greedy method, the solution to a problem is viewed as the result of a sequence of decisions.
• Unlike the greedy method, decisions are not made in a greedy and binding manner.

0/1 Knapsack Problem

(Section 15.2.1, p.715 of Text)

Let \(x_i = 1 \) when item \(i \) is selected and let \(x_i = 0 \) when item \(i \) is not selected.

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{n} p_i x_i \\
\text{subject to} & \quad \sum_{i=1}^{n} w_i x_i \leq c \\
\text{and} & \quad x_i = 0 \text{ or } 1 \text{ for all } i
\end{align*}
\]

All profits and weights are positive.
Sequence Of Decisions

- Decide the x_i values in the order $x_1, x_2, x_3, \ldots, x_n$
- Decide the x_i values in the order $x_n, x_{n-1}, x_{n-2}, \ldots, x_1$
- Decide the x_i values in the order $x_1, x_n, x_2, x_{n-1}, \ldots$
- Or any other order.

Problem State

- The state of the 0/1 knapsack problem is given by
 - the weights and profits of the available items
 - the capacity of the knapsack
- When a decision on one of the x_i values is made, the problem state changes.
 - item i is no longer available
 - the remaining knapsack capacity may be less

Problem State

- Suppose that decisions are made in the order $x_1, x_2, x_3, \ldots, x_n$.
- The initial state of the problem is described by the pair $(1, c)$.
 - Items 1 through n are available (the weights, profits and n are implicit).
 - The available knapsack capacity is c.
- Following the first decision the state becomes one of the following:
 - $(2, c)$ \ldots when the decision is to set $x_i = 0$.
 - $(2, c-w_j)$ \ldots when the decision is to set $x_i = 1$.
Principle of Optimality

- An optimal solution satisfies the following property:
 - No matter what the first decision is, the remaining decisions are optimal with respect to the state that results from this decision.

- Dynamic programming may be used only when the principle of optimality holds.

0/1 Knapsack Problem

- Suppose that decisions are made in the order x_1, x_2, x_3, ..., x_n.
- Let $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ be an optimal solution.
- If $a_1 = 0$, then following the first decision the state is $(2, c)$.
- a_2, a_3, ..., a_n must be an optimal solution to the knapsack instance given by the state $(2, c)$.

\[
\begin{align*}
 x_1 &= a_1 = 0 \\
 \text{maximize} & \quad \sum_{i=2}^{n} p_i x_i \\
 \text{subject to} & \quad \sum_{i=2}^{n} w_i x_i \leq c \\
 & \quad \text{and } x_i = 0 \text{ or } 1 \text{ for all } i
\end{align*}
\]

- If not, this instance has a better solution b_2, b_3, ..., b_n.
 \[
 \sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i
 \]
\(x_1 = a_1 = 0 \)

- \(x_1 = a_1, x_2 = b_2, x_3 = b_3, \ldots, x_n = b_n \) is a better solution to the original instance than is
 \(x_1 = a_1, x_2 = a_2, x_3 = a_3, \ldots, x_n = a_n \).

- So \(x_1 = a_1, x_2 = a_2, x_3 = a_3, \ldots, x_n = a_n \) cannot be an optimal solution ... a contradiction with the assumption that it is optimal.

\(x_1 = a_1 = 1 \)

- Next, consider the case \(a_1 = 1 \). Following the first decision the state is \((2, c-w_1) \).

- \(a_2, a_3, \ldots, a_n \) must be an optimal solution to the knapsack instance given by the state \((2, c-w_1) \).

\[\text{maximize } \sum_{i=2}^{n} p_i x_i \]

\[\text{subject to } \sum_{i=2}^{n} w_i x_i \leq (c-w_1) \]

and \(x_i = 0 \) or \(1 \) for all \(i \)

- If not, this instance has a better solution \(b_2, b_3, \ldots, b_n \).

\[\sum_{i=2}^{n} p_i b_i > \sum_{i=2}^{n} p_i a_i \]
$x_1 = a_1 = 1$

- $x_1 = a_1$, $x_2 = b_2$, $x_3 = b_3$, ..., $x_n = b_n$, is a better solution to the original instance than is
 $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$.

- So $x_1 = a_1$, $x_2 = a_2$, $x_3 = a_3$, ..., $x_n = a_n$ cannot be an optimal solution ... a contradiction with the assumption that it is optimal.

0/1 Knapsack Problem

- Therefore, no matter what the first decision is, the remaining decisions are optimal with respect to the state that results from this decision.
- The principle of optimality holds and dynamic programming may be applied.

Dynamic Programming Recurrence

- Let $f(i,y)$ be the profit value of the optimal solution to the knapsack instance defined by the state (i,y).
- Items i through n are available.
- Available capacity is y.
- For the time being assume that we wish to determine only the value of the best solution.
 - Later we will worry about determining the x_i that yield this maximum value.
- Under this assumption, our task is to determine $f(1,c)$.
Dynamic Programming Recurrence

- \(f(n, y) \) is the value of the optimal solution to the knapsack instance defined by the state \((n, y)\).
 - Only item \(n \) is available.
 - Available capacity is \(y \).
- If \(w_n \leq y \), \(f(n, y) = p_n \).
- If \(w_n > y \), \(f(n, y) = 0 \).

Dynamic Programming Recurrence

- Suppose that \(i < n \).
 - \(f(i, y) \) is the value of the optimal solution to the knapsack instance defined by the state \((i, y)\).
 - Items \(i \) through \(n \) are available.
 - Available capacity is \(y \).
 - Suppose that in the optimal solution for the state \((i, y)\), the first decision is to set \(x_i = 0 \).
 - From the principle of optimality (we have shown that this principle holds for the knapsack problem), it follows that \(f(i, y) = f(i+1, y) \).

Dynamic Programming Recurrence

- The only other possibility for the first decision is \(x_i = 1 \).
- The case \(x_i = 1 \) can arise only when \(y \geq w_i \).
- From the principle of optimality, it follows that \(f(i, y) = f(i+1, y-w_i) + p_i \).
- Combining the two cases, we get
 - \(f(i, y) = f(i+1, y) \) whenever \(y < w_i \).
 - \(f(i, y) = \max\{f(i+1, y), f(i+1, y-w_i) + p_i\}, y \geq w_i \).
Recursive Code

```java
/** @return f(i,y) */
private static int f(int i, int y)
{
    if (i == 0) return 0;
    if (y < w[i]) return f(i + 1, y);
    return Math.max(f(i + 1, y),
                    f(i + 1, y - w[i]) + p[i]);
}
```

Recursion Tree

```
       f(1,c)
      /   \
   f(3,c)  f(3,c-w1)
  /   \    /   \  
 f(2,c)  f(2,c-w1)  f(3,c-w1)
 /\    /\     /\    /\  
 f(1,c) f(3,c) f(3,c-w1) f(3,c-w1)
```

Time Complexity

- Let t(n) be the time required when n items are available.
- t(0) = t(1) = a, where a is a constant.
- When t > 1, t(n) ≤ 2t(n-1) + b, where b is a constant.
- t(n) = O(2^n).

Solving dynamic programming recurrences recursively can be hazardous to run time.
Reducing Run Time

Time Complexity

- Level i of the recursion tree has up to 2^{i-1} nodes.
- At each such node an $f(i,y)$ is computed.
- Several nodes may compute the same $f(i,y)$.
- We can save time by not recomputing already computed $f(i,y)$s.
- Save computed $f(i,y)$s in a dictionary.
 - Key is (i, y) value.
 - $f(i, y)$ is computed recursively only when (i, y) is not in the dictionary.
 - Otherwise, the dictionary value is used.

Integer Weights

- Assume that each weight is an integer.
- The knapsack capacity c may also be assumed to be an integer.
- Only $f(i,y)$s with $1 \leq i \leq n$ and $0 \leq y \leq c$ are of interest.
- Even though level i of the recursion tree has up to 2^{i-1} nodes, at most $c+1$ represent different $f(i,y)$s.
Integer Weights Dictionary

- Use an array fArray[][] as the dictionary.
- fArray[1:n][0:c]
- fArray[i][y] = -1 if f(i,y) not yet computed.
- This initialization is done before the recursive method is invoked.
- The initialization takes O(cn) time.

No Recomputation Code

```java
private static int f(int i, int y)
{
    if (fArray[i][y] ≥ 0) return fArray[i][y];
    if (i == n) { fArray[i][y] = (y < w[n]) ? 0 : p[n];
        return fArray[i][y];}
    if (y < w[i]) fArray[i][y] = f(i + 1, y);
    else fArray[i][y] = Math.max(f(i + 1, y),
        f(i + 1, y - w[i]) + p[i]);
    return fArray[i][y];
}
```

Time Complexity

- t(n) = O(cn).
- Good when cn is small relative to 2^n.
- n = 3, c = 1010101
 w = [100102, 1000321, 6327]
 p = [102, 505, 5]
- 2^n = 8
- cn = 3030303