Exponential Base Change Based on Symmetry
Timothy Rolfe
Professor of Computer Science Emeritus
Eastern Washington University
319F CEB
Cheney, Washington 99004-2493, USA
http://penguin.ewu.edu/~trolfe
mailto:Timothy.Rolfe@mail.ewu.edu

Abstract
This article examines the recurrence obtained for Catalan numbers based on their description of the number of unique binary search tree structures possible with \(n\) distinct keys. The straightforward recurrence obtained, when transformed into a recursive method, obtains the solution in \(3^n\) method invocations. With a small change based on symmetry, this can be changed to obtain the solution in \(2^n\) method invocations. Of course, one can obtain the solution in massively fewer operations in a dynamic programming / memoized solution.

General Terms
Algorithms, Performance

Keywords
Catalan Number, Binary Search Tree, Optimization

Categories and Subject Descriptors
D.2.8 Metrics — Performance measures
F.2.2 Nonnumerical Algorithms and Problems — Computations on discrete structures

Problem Statement
Nick Parlante, in an article “Binary Trees”, copyrighted 2000/2001, available on the Stanford University web site, includes this challenge:

12. countTrees()

This is not a binary tree programming problem in the ordinary sense — it's more of a math/combinatorics recursion problem that happens to use binary trees.
(Thanks to Jerry Cain for suggesting this problem.)

Suppose you are building an \(N\) node binary search tree with the values 1..\(N\). How many structurally different binary search trees are there that store those values? Write a recursive function that, given the number of distinct values, computes the number of structurally unique binary search trees that store those values. For example, countTrees(4) should return 14, since there are 14 structurally unique binary search trees that store 1, 2, 3, and 4. The base case is easy, and the
recursion is short but dense. Your code should not construct any actual trees; it's just a counting problem.

The first few examples are easy to construct: there is only one binary search tree with no items, bst(0), and similarly only one with a single item, bst(1). After that, things start growing. There are two trees of size two (Figure 1). After that, different permutations can generate the same tree structure, such as BAC and BCA. Thus bst(3) is 5, not 6, 3! (Figure 2) and bst(4) is 14, not 24, 4! (Figure 3).

Figure 1

Figure 2

Figure 3
We can model the problem as building binary search trees of the numbers from 1 to \(N \). The recurrence can easily be seen as constructing a tree of these \(N \) keys based on selecting one of the numbers as the root for that tree, followed by completing the tree based on adding two subtrees totaling \(N-1 \) keys as the left- and right-subtrees to the root. The base case is the empty tree, of which there is only one example. As the left subtree contains more and more entries, the right subtree contains fewer and fewer. This can be represented by the following recurrence, pulled from Wikipedia, which is the recurrence relationship for Catalan numbers:

\[
C_0 = 1 \quad \text{and} \quad C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i} \quad \text{for} \quad n \geq 0
\]

This is the recurrence that Nick Parlante encodes in his solution to the problem:

```java
/**
   For the key values 1...numKeys, how many structurally unique
   binary search trees are possible that store those keys?

   Strategy: consider that each value could be the root.
   Recursively find the size of the left and right subtrees.
*/
public static int countTrees(int numKeys) {
    if (numKeys <=1) {
        return(1);
    }
    else {
        // there will be one value at the root, with whatever remains
        // on the left and right each forming their own subtrees.
        // Iterate through all the values that could be the root...
        int sum = 0;
        int left, right, root;

        for (root=1; root<=numKeys; root++) {
            left = countTrees(root-1);
            right = countTrees(numKeys - root);

            // number of possible trees with this root == left*right
            sum += left*right;
        }

        return(sum);
    }
}
```

If one includes a global counter within the method, one can capture the total number of method invocations required to compute the number of \(N \)-node trees and see that there are exactly \(3^N \).
Side note: the majority of the work for this paper was done before I encountered Nick Parlante’s paper, based on a version of the above recurrence formulated for C_n rather than C_{n+1}. Hence the loops and summations in my work are for [0..n−1] rather than for [1..n].

There is a mirror symmetry within this problem: the trees with a j-node left subtree and a k-node right subtree are simply mirror images of the trees with a k-node left subtree and a j-node right subtree. Consequently, one can drive the loop to compute half of the trees and allow the symmetry correction to give the other half. If n is an odd number, then there is one special case (with left- and right-subtrees of size $n/2$) that needs to be added.

```java
static long bst2(int n)
{  long accum = 0L;
    int j = 0, k = n-1;
    if (n == 0) return 1;
    while (j < k)
        accum += (bst2(j++) * bst2(k--))<<1; // *2 via left shift
    if (j == k) // Odd n
    {  long temp = bst2(j);
        accum += temp * temp;
    }
    return accum;
}
```

The startling result, however, is that a global counter within the method shows that the total number of method invocations is now 2^n to solve the problem.

Method Invocation Modeling

From the computational code, one can obtain program schemata to model just the method invocations involved. These count up the method invocation that enters the method and then those coming from the recursion. The code below uses memoization.

```java
static long[] b1, // Calls to compute bstC1, created in main
    b2; // Calls to compute bstC2

static long bstC1(int n)
{  if (b1[n] == 0)
    {  long accum = 1; // The call that got us here
        int j; // Loop variable
        for (j = 0; j < n; j++)
            accum += bstC1(j) + bstC1(n-j-1);
        b1[n] = accum;
    }
    return b1[n];
}

static long bstC2(int n)
{  if (b2[n] == 0)
    {  long accum = 1; // The call that got us here
        int j = 0, k = n-1; // Loop variables
        while (j < k)
\[
\text{accum} += \text{bstC2}(j+1) + \text{bstC2}(k-1);
\]
if (j == k)
  \[
  \text{accum} += \text{bstC2}(j);
\]
\[
b2[n] = \text{accum};
\]
}

return b2[n];

### Analytic Proofs of Behaviors

The method call behavior for the first recurrence, \( \text{bst}1 \), is slightly easier to prove: it turns into a power series. That is, \( \text{bstC1}(n) = 3^n \). Also, it provides an example of extremely strong induction: the proof depends not on a couple of earlier results (like the Fibonacci series), but on all of the earlier results.

Base case: \( \text{bstC1}(0) = 1 \)

Inductive proof:

\[
\text{bstC1}(n>0) = 1 + \sum_{j=0}^{n-1} \text{bstC1}(j) + \text{bstC1}(n-1-j)
\]
Recurrence

\[
= 1 + \sum_{j=0}^{n-1} \text{bstC1}(j) + \sum_{k=0}^{n-1} \text{bstC1}(k)
\]
Change of variable

\[
= 1 + 2 \cdot \sum_{j=0}^{n-1} \text{bstC1}(j)
\]
Simplification

\[
= 1 + 2 \cdot \sum_{j=0}^{n-1} 3^j
\]
Inductive hypothesis

\[
= 1 + 2 \cdot \frac{3^n - 1}{2}
\]
Power series, \( c = 3 \)

\[
= 3^n
\]
Simplification

The method call behavior for the second, \( \text{bstC2} \), requires separate proofs for even and odd \( n \). It also collapses into a power series, but now \( \text{bstC2}(n) = 2^n \).

Base case (for both even and odd \( n \)): \( \text{bstC2}(0) = 1 \)

Inductive proof, even \( n \):

\[
\text{bstC2}(n>0) = 1 + \sum_{j=0}^{(n/2)-1} \text{bstC2}(j) + \text{bstC2}(n-1-j)
\]
Recurrence

\[
= 1 + \sum_{j=0}^{(n/2)-1} \text{bstC2}(j) + \sum_{k=n/2}^{n-1} \text{bstC2}(k)
\]
Change of variable

\[
= 1 + \sum_{j=0}^{n-1} \text{bstC2}(j)
\]
Simplification

\[
= 1 + \sum_{j=0}^{n-1} 2^j
\]
Inductive hypothesis

\[
= 1 + (2^n - 1)
\]
Power series, \( c = 2 \)

\[
= 2^n
\]
Simplification
Inductive proof, odd $n$, so that $bst2\lfloor n/2\rfloor$ is the middle case computed once:

$$bst2C(n>0) = 1 + bstC2\lfloor n/2\rfloor + \sum_{j=0}^{\lfloor n/2\rfloor - 1} bstC2(j) + bstC2(n-1-j)$$

Recurrence

$$= 1 + \sum_{j=0}^{\lfloor n/2\rfloor - 1} bstC2(j) + bstC2\lfloor n/2\rfloor + \sum_{k=\lfloor n/2\rfloor}^{n-1} bstC2(k)$$

Change of variable

$$= 1 + \sum_{j=0}^{n-1} bstC2(j)$$

Simplification

$$= 1 + \sum_{j=0}^{n-1} 2^j$$

Inductive hypothesis

$$= 1 + (2^n - 1)$$

Power series, $c = 2$

$$= 2^n$$

Simplification

**Preferable Method**

As is the case with many recursive methods, this easily generates a solution based on memoization, computing each result exactly once. Since the language used is Java, the memoization vector is a global one.

```java
static long[] BSTvect = { 1L }; // Memoization vector

static long dynBST(int n)
{
 if (n >= BSTvect.length)
 {
 long[] newVect = new long[n+1];
 System.arraycopy(BSTvect, 0, newVect, 0, BSTvect.length);
 BSTvect = newVect;
 }
 if (BSTvect[n] == 0)
 {
 int j;

 for (j = 0; j < n; j++)
 BSTvect[n] += dynBST(j) * dynBST(n-j-1);
 }
 return BSTvect[n];
}
```

For each uncomputed $BSTvect[n]$, the calculation requires $n$ multiplications and additions, and each cell is computed exactly once. Thus filling the memoization vector of size $n$ will be accomplished in $O(n^2)$ time, nicely exchanging base and exponent from $2^n$.

**Summary**

This provides an example of how one can make a small change in an algorithm and reap massive benefits in the algorithm’s performance. Proving the behaviors could be an interesting problem for upper division undergraduates, particularly if they are required to obtain the recurrences from the original algorithms.

Full implementations of the code discussed above are available on the author’s web site. In addition to the Wikipedia entry, detailed discussions of Catalan numbers may be found on the Wolfram MathWorld web site (“the web’s most extensive mathematics resource”).
Acknowledgements
I would like to thank Bojian Xu, Ph.D., Assistant Professor of Computer Science at Eastern Washington University, for many helpful comments as I developed this paper, particularly with respect to the analytic proofs for the behaviors. I would also like to thank John Impagliazzo, Ph.D., Professor Emeritus at Hofstra University and editor-in-chief of this magazine, for suggesting including figures to help in understanding the problem. Finally, I would like to thank my friend, John Burke, Ph.D., Professor of Mathematics at Gonzaga University, for checking the inductive proofs for the algorithm performances — after I had corrected the mistakes that Professor Bojian Xu had identified.


3 Nick Parlante, loc. cit.

4 For $n=1$, $\sum_{j=0}^{n-1} f(j) = 0$, reflecting a loop that executes zero times.

5 $\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \in O(n^2)$

6 http://penguin.ewu.edu/~trolfe/BaseChange/