
Unifying Security Tools

A project Presented to The Academic
Faculty Of Eastern Washington University

In Partial Fulfillment Of the Requirements
for the Degree Masters Of Science in the

College of Science, Health and Engineering

David McCombs
June 1, 2011



Unifying Security Tools

The project of David McCombs has been approved and is acceptable in qual-
ity and format:

Approved by:

Dr. Carol Taylor, Chairperson
Computer Science
Eastern Washington University

Dr. Kosuke Imamura, Member
Computer Science
Eastern Washington University

Dr. Doris , Graduate Council Representative
Library
Eastern Washington University

1



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Security Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Statement of Purpose . . . . . . . . . . . . . . . . . . . . . . . . 10
Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Languages and Frameworks . . . . . . . . . . . . . . . . . . . . . 16
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Initial Prototype Choices . . . . . . . . . . . . . . . . . . . . . . 21
Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Tool and Library Selection . . . . . . . . . . . . . . . . . . . . . . 22

Prototype Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Database Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Prototype Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Prototype Audit Plugin . . . . . . . . . . . . . . . . . . . . . . . 31
Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Manual Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Automated Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Software Design Results . . . . . . . . . . . . . . . . . . . . . . . 62
Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
0.0.1 NetProbe Report-mccombsonline.net . . . . . . . . . . . . 71
0.0.2 NetProbe Report-maplewoodsoftware.com . . . . . . . . . 79

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2



Abstract

This project describes a proof of concept to unify various security tools and

libraries. It focuses on basic functionality that comprises every network security

assessment. The project is designed to not only unify tools by automating input

and managing input but to smooth the learning curve of these tools for computer

science students.

This report describes the current security landscape in regard to tools, li-

braries and methodologies. The design of the project is described as well as

potential features in future work. The project is evaluated in terms of ease of

use at both the programmer and security audit level and compared to manually

running each step that was used in the initial audit script that was developed

during the project. The scope of the project was limited to the basic audit steps

without diving into details of the many substeps in each audit step.

3



Note: Words that are italicized are defined in the glossary.

Introduction

Security Overview

Since the Internet and World Wide Web has gained wider acceptance, secu-

rity has been a growing problem. This problem has only increased as more

companies, organizations and individuals have built and maintained their own

networks which connect to the Internet. Further, lack of understanding of se-

curity principles have created well publicized incidents. A current example is

retailer TJ Maxx, who lost thousands of its customer’s credit card numbers after

violating established practices.[5]

In early 2007, the retailer TJ Maxx discovered that the servers that stored

several years of customer data, including credit cards were breached. The data

was not properly secured and was compromised by attackers. Storing credit

card numbers is in violation of standards created by banks that service credit

card purchases. The end result was the loss of millions of credit card numbers,

and banks started to offer millions in incentives for retailers to perform audits

on their data collection and storage procedures.[3] The hackers used a variety of

attacks to get this information such as installing backdoors and Structured Query

Language (SQL) injection. The attackers were eventually caught and convicted,

but much damage was done. This incident was entirely preventable.[10]

To combat these threats many types of security measures have been en-

acted, all of which are expensive in terms of both time and money, and as the

TJ Maxx incident demonstrated, compliance is not always enforced. These mea-

sures include showing how to secure data, and what data should be kept,and

implementing security tools to monitor security breaches and stop attacks such

as firewalls and intrusion detection systems.

There are many existing security standards, all of which vary depending on

what the business is and what types of data are stored. There are also exist-

4



ing standards that are more general. Standards such as those published by the

Institute of Electrical and Electronics Engineers (IEEE) and International Or-

ganization for Standardization (ISO). These standards are comprehensive and

cover areas such as data storage, encryption, and compliance testing procedures.

However, the IEEE and ISO standards are not mandatory by any type of en-

forcement or regulatory agency and thus may not be followed. This lack of

mandatory implementation exists for many of the industry-defined standards as

well.

Governmental regulations such as the Sarbanes-Oxley Act (SOX), Health

Insurance Portability and Accountability Act (HIPAA)[7], and Gramm-Leach-

Bliley Act (GLBA)[11] have placed additional requirements on many types of

companies and corporations. Oddly, these regulations place very few require-

ments on the producers of software and hardware that these organizations use.

This lack of accountability on hardware and software manufacturers can open

up these networks to vulnerabilities that can only be solved by placing security

boundaries around the software. This can lead to a complex network that is

difficult to manage. These requirements do not only address computing and

network security, they add requirements to prove compliance, plus there ex-

ists other software and hardware standards that might be required in certain

domains, such as developing and implementing hardware and software for the

Department of Defense that will be used for classified purposes.

In addition to implementing security measures, these regulations require

third party security audits, sometimes called penetration testing. These tests

cover many aspects of network and computer security. While the extra govern-

ment regulations dictate standards, which to an extent dictate the type of tests

there are no standard tools or methods used by external or internal security

auditors. There may be a set of standards within an organization, but between

organizations and auditors the tools and methodologies may vary widely.

To complicate matters, computer manufacturers and suppliers of operating

systems rarely configure the system in a secure manner “out of the box”. This

5



leaves home users and small businesses who cannot afford to hire professional

administrators lacking information on how to secure their computers and net-

works, leaving them increasingly vulnerable. The lack of secure configuration is

compounded by an ever increasing number of software and system vulnerabili-

ties.

In 1995, 171 vulnerabilities were cataloged by the Carnegie-Mellon Univer-

sity Software Engineering Response Team(CERT) and in the first three quarters

of 2008 they collected a list containing 6058 vulnerabilities nearly as much as the

7236 vulnerabilities found in 2007. They have since stopped collecting this data.

[2] In 2007, over 37,000 breaches of government and corporate computer systems

were reported. [6] According to statistics listed by Lavasoft, an anti-spyware

company, 90% of all home computers in the United States will get at least one

infection, and according to Gartner in 2006 40% of companies will either get

infected or targeted over the Internet by “financially-motivated” criminals.[9]

Current methods and tools used to secure computers have flaws but they

do provide some benefit and are always improving. While firewalls and IDS are

not the only tools used to combat attackers, they are the first line of defense.

Both firewalls and IDS rely on having rules properly configured so malicious

data can not pass through the firewall without alerting the IDS. The rules can

be very complicated and are error prone, especially in a complex network that

has several levels of traffic and users. It is a very complicated and expensive

process, even for well-trained professionals. For home use, the environment is

less complex, but so are the tools and level of protection.

Many firewalls built for home use take many of the decisions out of the

customers hands, leaving them at the mercy of the default settings. On the

other hand, few home users are educated enough to make informed firewall

decisions. Consumer level intrusion detection is rare and what exists is mainly

anti-malware scanners that are reactive. They are based on known malware

signatures with little ability to detect new malware. The methods used to

obtain access to these computer networks are also improving and often at a

6



faster rate.

Many of the tools used to defend and test networks are also used by attackers,

but attackers can go further with brute force attacks that take time and skill.

However, there are many attacks that are automated. These are used by many

different attackers with differing motives, but are noted for being used by ’script

kiddies’. These attackers have little to no technical knowledge and completely

rely on these scripts to carry out the attacks.

The weakest link in any network is the human element. Many companies

routinely conduct security training for their employees to combat this threat.

Despite this effort, social engineering threats remain a growing problem. These

threats are made possible through weak passwords, downloading and installing

suspect programs, opening suspect email attachments, and voluntary informa-

tion disclosure. This is truly the most critical part of security. However, it is

the general belief within the security community that no software or hardware

solution will ever mitigate this threat, nor will any regulation.

Existing security tools either demand too much knowledge and user inter-

vention or have too little interaction, both of which lead to lowered security.

The “nag” alerts by verbose tools such as Windows-based firewalls annoy the

user, leading them to turn it off. The tools that operate silently often only pro-

vide minimal functionality by default and make it difficult to configure for the

“average” user. Security penetration tools are beyond the knowledge and skills

of the “average” computer user, and even many system administrators. They

require not only knowledge about the tool, but the systems and protocols that

they are testing.[1] Regardless of whether or not security standards exist for an

organization, the tools described in this paper are not specifically modified to

meet them. This requires manual testing which can take longer, has a steeper

learning curve, and is prone to errors and omissions.

More security information is available than ever before, and more news sto-

ries about security breaches have raised awareness, but that hasn’t slowed down

the number of security flaws and exploits. For home users, there may be no

7



good solution that will generally work other than improving awareness of scams

and demanding operating system and software vendors to take security more

seriously. For organizations and those interested in learning about these issues

and how to avoid them the landscape is broad and cluttered with many tools

and techniques making the learning and work environment complex.

Motivation

Computer science students learning security find a steep learning curve for many

of the free and open source security tools and information about how to conduct

a thorough audit is lacking. With each additional tool and protocol the learning

curve becomes steeper. Further, these tools generally do not work together and

often miss important information and suffer from false positives. That is, results

from one tool have to be manually added to another and even after running a

tool, much more testing is required to verify the results. For example, the results

of a open port scan, which is usually very accurate, from Nmap may have to

be manually entered into a vulnerability scanner or attack tool. This results in

considerably more time required to finish the audit, and there is a significant

chance that a certain target may be inadvertently left out.

In the professional world, these same issues occur, and usually on a larger

scale, since a professional penetration tester may have potentially thousands of

targets and dozens of protocols to account for in a single audit. Finding a way to

minimize the complexity, while raising the quality of an audit will help security

professionals to catch up to the attackers. Automated reporting is one way to

help achieve this, since it will be able to report on everything found and when

done manually this is another point where errors or omissions can happen.

Existing Solutions

There are integrated security tools and Linux distributions that come with se-

curity tools preinstalled. Some of these tools in the Linux distributions can be

difficult to install and configure. However, the tools still lack higher levels of

8



integration. The integrated tools are very expensive ranging from a few hundred

dollars up to tens of thousands of dollars. These tools are also not what the

attackers use to probe for and exploit targets which means avenues of attacks

and vulnerabilities may be missed by the auditor that will not be missed by an

attacker.

There is some integration among various open source tools. The web-server

vulnerability scanner called Nikto can integrate into Nessus and OpenVAS,

which are generalized security scanners. Nessus and OpenVAS will integrate

with Nmap, however it does not do well with a large number of targets. These

tools do not integrate with many other tools which might logically be used to

validate or exploit the vulnerability. Results from reconnaissance tools such as

nmap are not integrated into the input of some vulnerability tools and output

of various security tools such as intrusion detection systems and firewalls. For

example, knowing immediately if an Nmap scan was detected rather than hav-

ing to find out via searching through logs and email would greatly increase the

value of the scans.

Threat assessment is the process of determining what assets to protect.

Many current threat assessments often treat each node in a system as it is

in a vacuum.[8] An arbitrary value is assigned based on how difficult it is to

break in and how much damage they can do. This type of methodology often

misses how a vulnerable but low value target may have elevated privileges to a

higher value system or can gain privilege through more exploits leading to more

access inside the local area network. This technique, called chained exploits, can

be used as a base for further attacks into the network. Using multiple tools help

find these multiple level exploits but can be difficult because of the lack of inte-

gration between them. There are also so many different possibilities to exploit

a network, some are known, but many are unknown at any given time. This

makes vulnerability scans that look for specific problems less valuable because

older problems are invariably fixed, and there are always new vulnerabilities

discovered and not reported.

9



There is an analog to this in the software testing field. It is commonly called

fuzzing. Tools called fuzzers throw a mix of random and crafted input against

a target. Care is taken to test all paths of execution so all states can be tested.

These tools eliminate the need for a lot of manual testing and can be made

more useful by adding techniques such as supervised and automated learning

into the fuzzing process. This type of audit added with the more commonly

used techniques add much better coverage to any security test but this area of

study is still in its fetal stage.

Statement of Purpose

The purpose of this project is to determine whether or not integrating existing

free tools and using the result to craft further input is useful as a technique for

security evaluation. This will introduce an integrated software solution to assist

in internal and external evaluations of networks. Proprietary tools that can

cost thousands of dollars are not considered in the evaluation of this project.

The cost is prohibitive and they are not used as much as the open source tools

because of the fact that the attackers use them as well. Making a computer

network 100% secure is an impossibility, but finding and fixing the majority of

holes that the low to mid skill attackers can find will get a network much closer

to that elusive goal.

The comparisons will be in the form of using results for this project to cre-

ate a baseline for evaluation against using these tools independently. A very

important factor in judging this project will be in evaluating the automatically

generated report. Initially, the results will be more results-based, what was

found and not necessarily the implications. Over time the project can be ex-

panded to a knowledge base system that can determine the seriousness of what

was discovered, such as chained attacks and network fuzzing.

Another possible metric for evaluating this project would be to measure how

it works as an educational tool for computer science and networking students.

The points of evaluation are based on usability and usefulness. It is hoped that

10



the program will assist networking students in learning the basics of a security

audit while lessening the steep learning curve of the many tools and techniques

used to perform these audits. A professional auditor will still have to understand

the tools used in the same way that a programmer needs to understand libraries

and how software interacts with the underlying hardware. The main benefit to

the professional is the ability to easily use output of one application to craft

input, whether automatically or by hand, into another program. This will save

time and increase the accuracy of the scan.

If possible, finding professional auditors to evaluate the program would be

helpful in evaluating the program. Time constraints and availablity of interested

people will likely make this difficult. This project will utilize several disciplines

in computer science; networking, security testing, and software design and en-

gineering. The main focus is in contributing to security testing and education.

Secondary concerns relate to the design of the program and the ease of extending

its functionality in the future.

The initial state of the project will be a basic prototype to demonstrate how

the included libraries are used to create a plug-in system and how custom audits

can be written. While the entire API will not be written as the potential size

and scope is nearly limitless. This will introduce the importance of scaling the

library while keeping the learning and usability curve mild. However, a library

of all the tools used in the prototype will be made available.

Each part of the prototype audit will use different methods to write the

audit scripts. Object-oriented and functional approaches will be used, as well

as a meta-programming example. These will be evaluated in terms of how

well they will work as a general use method of writing custom audits and the

steepness of the learning curve. An important consideration is how easy it is to

write a custom audit. The programming skills of students can differ by a wide

margin and professional auditors may not have any formal computer science

education or may not even be able to program at all.

The evaluation that will be performed will consist of several parts:

11



1. Determine the ease of use and accuracy of the automated audit in com-

parison with running the individual tools separately.

2. Evaluate each programming approach in terms of flexibility.

3. Ease of interfacing with the libraries when writing custom audits.

Project Goals

This section lists the goals that determine the software choices and development.

It should be noted that it is not the intent of this project to produce a complete

working audit tool that covers the entire network security spectrum. The main

goal is to produce a working prototype, called NetProbe, that can be used to

focus and develop the program in a development team.

The main focus are legitimate security audits, where the auditor is autho-

rized to test the network. It is not intended to be a tool used for nefarious

purposes. However, It has always been the case that legitimate security tools

are used by hackers. For example, locksmith’s tools have both legal and illegal

uses. There will be features added to the initial design so legitimate testers can

make sure they are not attacking unauthorized targets.

It is also important to note that the initial plugin is targeting production

systems. Thus, techniques that can bring down the system or corrupt data will

be avoided. In later work, these techniques can be added to target mirrored

systems that will not disrupt the business of the client if attacks do bring down

the system. Because of this, the initial prototype will return important, but

fairly shallow details. These details include the IP addresses off all machines in

the network(s) and the types of network services running These details are typ-

ically obtained before the auditor gets into the attack and deeper enumeration

and discovery tests. Therefore, the results will be incomplete but will still be

useful for both academic and business world purposes.

Goal 1

12



The basics of the security audit will be implemented and tested. This in-

cludes several steps: enumeration, discovery, vulnerability testing, and report-

ing. Each of these steps can have many substeps which are ignored given the

time and personnel constraints of the project.

Enumeration

Enumeration is the process in which IP addresses and associated names are

found. For example, find all IP addresses associated with a URL, such as

www.example.com or to take a range of IP addresses and try and put names

to them, i.e. 192.168.0.0/27. The goal of this step is straight forward: find as

many targets as possible without adding irrelevant targets. For example, after

a search of all associated name related to www.example.com, all of the host

names can be compared with the owners to make sure they are all owned by

example.com. Of all the basic steps in a security evaluation, this one is the

most consistant across all audit domains. It is also critical so that targets that

the tester is not authorized to use are excluded, but all authorized targets are

included.

Discovery

Finding the services running on each node, the operating systems used, and

possibly existing firewall rules is the main focus of discovery. This includes

testing ports for all network nodes to see which ports are open, closed or filtered.

A port is filtered if no response is received from the target, this means the firewall

is dropping the request or that no machine is connected to that address. An

open port is where a non-reset response is given and a reset response identifies

the port as closed. This presents a good picture of the firewall rules, but more

involved testing is required to get more specific rules. The advanced firewall

rule testing is irrelevant to the evaluation of NetProbe so won’t be initially

implemented. These kinds of tests send packets that are corrupted in some way

or do not follow established protocols such as TCP.

13



Vulnerability Testing

Vulnerability testing can involve several steps. One is to actively probe for

vulnerabilities that exist on the machine being tested. Another possible step is

to try and break in to nodes in the network. Many of these techniques, such as

fuzzing, exploiting buffer overflows, and SQL injection that attempts to write to

the database can damage the target and will not be initially included. A more

advanced technique is to discover chained exploits. An example is to break into

a FTP server to try and get access to private networks behind the server.

The one step in vulnerability testing that will definitely be implemented is

using the network service data found in discovery to search online vulnerability

databases for known problems. These discoveries will not denote problems that

do exist in the target, but will alert the tester to potential issues. The other

techniques such as running Nikto, Nessus or OpenVAS will be added if time

permits. While these additional tests will increase the usefulness of a scan, they

will not add much to the value of the initial evaluations of the project.

Reporting

The last step is to report what was found. This involves taking all the collected

data and generating a readable report that can be acted on. Initially, the

report will cover what was found, but have little extra information about the

implications of what was found. For example, if the tester successfully attacks

a target and installs malware, certain types of port scans can help evaulate if

the firewall will get in the way of it communicating outside the network. In

future work a knowlege base can be developed to report these kinds of critical

implications of what was found but is not all that relevant to meeting the goals

of the initial evaluation.

These steps will be run and the final report will be used in the functional

evaluation to determine the value and potential of these automated scans over

running them manually.

Goal 2

14



There is nearly an infinite number of variations in an audit scan that are deter-

mined by goals of the scan, type of the target and any regulatory requirements

that must be met. The difference in an audit of a bank’s systems and the scan

a student performs in the security lab should be obvious. For that reason a

plug-in system that is both simple and powerful is an important goal. The abil-

ity to add in new functionality into any script at runtime should be included in

long term plans. This will enable the auditor to view, evaluate and respond to

unexpected or interesting results during a scan. There needs to be a reasonable

tradeoff between lines of code in the audit script and its flexibility.

To evaluate the possibilities, the NetProbe audit plugin will try various types

of software paradigms. These will be evaluated by several criteria. It should

be easy to learn. Not everyone who might use this program has programming

skills, but most testers should be able to write a script that is nothing more

than making a list of audit steps and tools to run and the underlying libraries

can perform those steps and properly interact with other steps as needed. It

must be flexible enough to be useful at several levels of audit detail and be able

to handle customized code that can be injected into the scan at one or more

points.

These two criteria are in conflict and tradeoffs will need to be made. For

example, a short list of commands could be developed that require no special

programming ability, however, it would be hard to be flexible enough to be able

to write scripts for simple and advanced audits. On the other extreme, having a

set number of libraries for basic functionality and then forcing the audit script

writer to come up with the rest of the functionality with little library support

would make the system useless as the time required and knowlege requirements

would be excessive.

15



Design Considerations

The following sections describe the considerations given to the design of the

software and how it relates to the evaluation of the project.

Languages and Frameworks

The language chosen will obviously have the biggest impact on the choices for

frameworks and interfaces. It also has a major impact on the ease of develop-

ment and its ease of use as a security tool. The basic requirements are that

the language is free, easily available, reasonably easy to learn and use, and is

simultaneously cross-platform and able to effectively leverage the underlying op-

erating system and hardware. To keep the options down to a reasonable number,

only those languages that are used in EWU’s computer science department, in

one or more courses were considered. While this constraint removes excellent

languages such as Lisp and Haskell, it will help ensure that anyone who picks

up the project for a class or Masters project can do so with little effort. It also

ensures that the language usage is widespread enough to be used by a large

portion of the intended audience. The languages to be evaluated are C, C++,

C#, Ruby, Java, JRuby, and Python.

The issue of cross-platform is important but not all tools that can or will

be used adhere to this requirement. Many of the basic tools used are cross-

platform, but more advanced tools generally are not. Sill, it is important that

the basic audit framework be useful for auditors regardless of their platform of

choice.

Another important consideration is domain specific language support (DSL).

The ability to write simpler languages with a given language and dynamically

adding features to the scans is one that will increase the flexibility and value of

any audit. Features that help support this include dynamic typing, open classes,

inheritance, lambdas(anonymous functions), and closures.

C/C++ - These two languages are compiled to machine language so are

16



generally faster then the other languages evaluated. The bottleneck in the

project is running applications that can take hours to complete. Because of this

execution speed is not important. The only other advantage these languages

hold is that it allows for direct access to system libraries and hardware such

as network cards when needed. However, the other languages do have bindings

to these low-level routines, and often in platform agnostic ways. With care,

these languages are cross-platform with the added requirement of compiling the

code for each platform. A big disadvantage is that these two languages are very

verbose, with C++ being the most verbose by far. They are also not flexible in

terms of easily writing domain specific languages.

C# - This statically-typed object-oriented language from Microsoft has lit-

tle to recommend for this project other than it has some support for anonymous

functions and closures. The syntax is familiar to programmers that know Java

and C++. C# is not cross-platform in the sense that the only supported run-

time(.NET) is Windows only. Linux support is achieved via the mono project.

Mono is not a Microsoft supported project and as such it is always behind

the .NET development curve which means there may be incompatibilities when

moving across platforms.

Ruby – A dynamically and strongly typed object-oriented language with

strong meta and functional programming support. Its advantages are flexible

frameworks and it is easy to learn. While the basic syntax is easy to learn it

has commonly-used features that may not be intuitive to programmers familiar

with C or Java, such as closures and lambdas. As such it can be described

as easy to learn but difficult to master. It is also commonly used for system

administration tasks so it can run external scripts and programs easily. There

is also good support for linking to C code via built in libraries and external

libraries such as Ruby-FFI. Ruby is well-known as a language of choice for

DSL writers. The Ruby interpreter is relatively slow and its C support is so

good that much of the Ruby standard library is written in C. Its downsides

are the execution speed, which is a non-issue for this project and lack of native

17



threads, but does have green threads. The threading is done in software, so

taking advantage of multiple cores is impossible. The recently released Ruby

1.9 has hardware threading support, but much of the standard library is not yet

thread-safe so native threads in Ruby 1.9 are intentionally hobbled.

Java- A statically-typed object-oriented language with solid libraries. It

boasts good execution speed because of the just in time (JIT) compilers and

has outstanding threading support. The syntax is familiar to CS students at

EWU as well as those familiar with C++. It is also quite verbose. and has

little in the way of acessible DSL support and does not integrate with C and the

underlying operating system as well as other high level languages. It is possible

to access native libraries using the Java Native Interface (JNI) which is fairly

complex.

JRuby – This is not a language per se, and is not used in the department.

JRuby is an implementation of Ruby written in Java. This means that JRuby

has the dynamic-typing and meta-programming support of Ruby with the speed

and thread support of Java. It also has access to the Ruby and Java libraries as

well as supporting access to C and C++ libraries via JNI or FFI. The downsides

are that many of the ruby libraries that are written in C are not supported.

These libraries were rewritten in Ruby, but still lack some of the low-level system

access of Ruby.

Python – A language similar to Ruby in scope, but with a different syntax.

It is also does not have nearly as good support for dynamic programming and has

limited closure and lamba support. Otherwise, Python has similar advantages

of Ruby. There is Java and .NET support for Python, such as Jython and

IronPython, but these are not considered simply to keep the number of options

down. Also Jython development has lagged in the last few years.

Frameworks are libraries that simplify tasks such as database development

and dynamic web page generation. The frameworks that may be used depending

on language and interface choices are:

.NET – Supports a wide range of uses from desktop to the web for C#, also

18



has support for Ruby and Python. However, Microsoft has pulled Ruby sup-

port and the ,NET Ruby project (IronRuby) has only one part-time volunteer

developer.

Ruby on Rails – A powerful web-based framework. It is modular so can be

used in other contexts. Has a simple and powerful library to manage databases

called Active Record and Nokogiri, a terrific HTML/XML parser and builder.

Django – A web-based framework for Python. Similar to Rails in scope and

modularity.

Active Objects – An object relational mapper for databases written in

Java and modeled after Active Record

Java Server Pages(JSP) and Servlets – A dynamic web page and server

library for Java. There are also many database access libraries available for Java

such as Hibernate.

Interface

Interface design is not a large part of the initial prototype design and evaluation.

However, ease of use in terms of actually using it and writing code to leverage

the interface is considered. In the software world there is, in general, three types

of user interfaces. These types are command line, graphical and web.

A command line interface is the most basic, and despite that it is very pow-

erful. In fact, most of the programs that the project uses are command line and

any program that will be useful to this project will support the command line.

This makes integrating them into the project, regardless of the interface used

much simpler. Providing a command line only application would not satisfy the

goal of simplifying the process of the security audit, and will not be used in

the prototype. It might also complicate the goal of platform independence by

relying on the underlying operating system. If command line was implemented,

writing a custom prompt inside a graphical interface would keep the platform

independent goals intact at the cost of adding more complexity to the UI inter-

face work. Adding an option to use it, or provide a command prompt at certain

19



points of the audit may prove useful in future work.

A graphical interface is the next option. While it does add complexity in

terms of development, the ease of use advantages are a good trade off. The main

issues are using an appropriate GUI library to maintain platform independence,

using a library that doesn’t have a steep learning curve, and abstracting writing

to the interface so that the library used is irrelevant. Solving the first issue

depends on the language used, although there are cross-platform libraries that

support multiple languages such as QT and wxWidgets. There are also cross-

platform libraries for single languages and runtime environments such as Swing

or AWT for Java. A command line and GUI can be implemented over the same

code with a little foresight and planning.

The last choice is a web interface. It has the advantages of ease of use,

is fairly easy to develop, and is trivial to run on multiple platforms. For this

project a disadvantage is that many tools used take a lot of time and it is difficult

to transmit that information in a web page without using Asynchronous Java

and XML (AJAX). AJAX, while improving all the time can be error-prone and

cause a lot of exceptions. This issue is not serious, but adds more complexity

for little gain over a traditional desktop graphical interface.

Parts of the project may greatly benefit from multi-processing, which may

be more difficult in a web architecture depending on the frameworks and server

chosen. Another advantage is the client/server model. This helps force clean

design and allows the most computationally intensive tasks to be run on more

powerful machines. A big advantage is that the user interface can be trivially

separated physically from the back-end. This gives the ability to run all the

scans remotely, which would make it easier for students to use. An example of

this is to keep a server running in the security lab at EWU, and students can

connect to it and run the scripts at home via a web browser, with no additional

software required. This decoupling is possible for graphical and command line

interfaces but does require installing software on the client machine. Good

design can be accomplished with any interface type with usage of patterns such

20



as Model-View-Controller(MVC) but may not be as strongly enforced outside

of web frameworks.

Initial Prototype Choices

The choices made for the prototype are as follows:

Language

In order to allow maximum flexibility in terms of software design, as well as

familiarity and access to the greatest number of libraries, JRuby will be used to

develop the prototype and evaluate the software design options. This will allow

easy integration of various network security tools and libraries while maintaining

access to a solid runtime environment.

Interface

The interface type will be a graphical user interface using Swing. There are

other options within JRuby including SWT, Tk,and Jambi, the Java bindings

for QT. Swing is taught at EWU so is more easily accessible. Perhaps the biggest

negative aspect of Swing are its layout managers that are used to place GUI

components on the screen. They are complex and very verbose. To overcome

this a third party layout manager called mig layout will be used. This will ensure

that the effort needed to present a user interface is minimized so more time can

be spent on developing and evaluating the more interesting and relevant parts

of the project.

Frameworks

With the above choices, the potential frameworks have been minimized. Since

the data collected with be stored in a simple database, Active Record will be

used. This will minimize the amount of code and time spent in reading and

writing to the database as well as managing relations between the tables. Other

Rails tools such as rake tasks, console access and database migrations will be

21



used. Almost any database can be used with ActiveRecord. It is trivial to

switch to a different database at any time without code or schema changes.

A simple change in a configuration file is all that is needed. For development

purposes MySQL will be utilized.

Software Design

The design of NetProbe will follow the MVC model which keeps GUI, database

access, and business logic separate. Initially it will feature a simple audit plug-in

system that will dynamically run various audits. The audit plug-in will feature

a different software design approach for each major step that can be evaluated

to see how easy writing a plug-in will be. These approaches include various

object-oriented designs, meta-programming and domain specific languages.

This mix of approaches will initially result in more libraries being needed to

be written, but then when they are evaluated and reimplemented, the excess

libraries can either be modified or thrown out. This is known as prototyping.

It will also mean that the audit plug-in script will not look consistent. Since

each portion of the scan will have different requirements, parts of the audit that

are the same across all of the audit steps will be abstracted away so these parts

will not impact design. A more detailed explanation and examples will be given

later in the specification section.

Tool and Library Selection

For the initial audit plug-in, the following tools will be used. It is a small list but

will provide enough functionality to cover all the steps in a typical audit. There

are many other tools and techniques that can be used to give more detailed

results. A few of these will be documented in the future work section.

Host – A program that performs Domain Name System (DNS) lookups.

This is used to map IP addresses to host names and vice versa.

Whois – A utility used to lookup information about domain names such as

who owns it,

22



Nmap – An all purpose port scanner that can be used to determine if

network nodes exist, what ports are open, and often what services, version and

underlying operating systems are at each port. Results are often complex, but

there is a ruby based parser to handle running and parsing Nmap during a scan.

Open Source Vulnerability Database (OSVDB) – This is a web-based

vulnerability database that maintains lists of known vulnerabilities in open

source and proprietary software. It provides a simple interface to retrieve re-

quests and also has the option of downloading the entire database. The pro-

totype will manually retrieve vulnerability information instead of downloading

the entire data set. There is a 100 request limit per day when using the API,

but is simpler in the long run. This query limit can be increased by contacting

the OSVDB managers. The online database is updated daily, and is a large

download.

Nikto - A vulnerability scanner used to test web sites.

There are other libraries that may be used in development to assist in using

the above tools.

Nmap-Parser – This Ruby library is used to parse the information received

by nmap scans.

Whois – A simple ruby gem to run who is requests.

Jpcap – If direct raw packet access is required this Java library that wrap

the C library libpcap will be used.

Open3 – A Ruby library used to manually run other programs. This library

manages input, output and error messages automatically so is more useful that

the built-in methods to run external programs.

If a program or library does not have an existing library to run and parse

the results, custom libraries will be written. Also, other libraries that handle

tasks such as network address calculation will be written using existing ruby

network libraries.

23



Prototype Description

The prototype, as mentioned is a desktop graphical application written in

JRuby, utilizing the Swing library. The only goal for the graphical interface

is to make sure it is straightforward to use.

Figure 1: Swing-Based Interface

Other than Swing, all other code written is done in Ruby, including the

Swing listeners that control the actions after a button or menu item has been

clicked. The Swing code is packaged up in a Java Archive (JAR) file, all other

code is stored in text files. It is possible to compile the Ruby code into Java .class

files and then archived into JAR file, and this is a likely method of distribution,

but adds nothing to the project at this time. This method also allows for the

24



distrubution of a single JRuby JAR file which can be run by any current Java

Virtual Machine(JVM).

Figure 2: Model View Controller

The basic layout of the

application follows the Model

View Controller (MVC) pat-

tern (Figure 2). The applica-

tion is split into logical por-

tions. The view holds all the

code used to generate the in-

terface. The model performs

routines on the database and

the controller ties them to-

gether. The controller consists of listeners, and the plug-in system. All of these

parts are in the top level folder called app. In addition to the MVC structures

there are libraries discussed below.

The last portion of the application structures are helpers. These are similar

to libraries, but are generally simpler and assist with parts of the application.

There are helpers that assist with setting up and storing information in the

database. This could have been done in the model classes, but was done this way

to keep the model class code clean and not break the ActiveRecord convention

that one model class represents a table and that a model instance is a row in

the database that Active Record tries to enforce.

A good method to write messages to the interface dynamically is not part

of the initial prototype evaluation. As such, it is mixed into the code to run

the various scans at not only the plug-in level but the application level. To

avoid unreasonable tight-coupling, any UI code in the application libraries are

abstracted and in some cases dynamically passed in as lambdas, This will make

is simple to pull out the UI code after evaluations are completed, but it does

increase the size of the plug-ins somewhat.

25



Libraries

There are two different library structures. One is in the app directory, and the

other is a top level directory. The application libraries contain functionality to

perform tasks that are application specific and may know about the database

structure and make model calls. An example is a custom audit plug-in library to

talk to the external library that handles Nmap functionality. The other libraries

are standalone and know nothing about the application. For example, scripts

that run external programs such as host or nmap or calculate IP address ranges.

Plugins

The plug-in system is simple. The plug-in file(s) are stored under the controller

directory called process to denote custom audit processes. The plug-in controller

can dynamically start and manage the plug-in. The code is simple, as shown

below.

1 c l a s s AuditRunner
2 de f i n i t i a l i z e target , view , no i se , aud i t p r o c e s s
3 r e qu i r e ’ app/ c o n t r o l l e r s / p roce s s / ’+aud i t p r o c e s s . name+’ / ’+

aud i t p r o c e s s . name
4 @class name = aud i t p r o c e s s . name . gsub ! ( / ˆ [ a−z ] | \ s+[a−z ] / ) { | a |

a . upcase }
5 @process = Object . c on s t g e t ( @class name ) . new target , view ,

no i se , aud i t p r o c e s s
6 end
7

8 de f run
9 methods = Object . c on s t g e t ( @class name ) . method names

10 methods . each do |method |
11 r e s = @process . send (method )
12 break un l e s s r e s
13 end
14 end
15 end

Listing 1: Audit Plugin Runner

The constructor for AuditRunner automatically calls initialize which sets

up the state of the object. There are four arguments, target, view, noise, and

audit process. View and noise are not yet implemented in an audit plug-in.

They are meant to allow for options to adjust scans to try and be stealthy or

not, and to trigger specific functionality that would only relate to specific types

26



of scans such as external and internal audits, and also target wireless networks.

Target is the target the user entered into the audit form. This can be either a

URL or IP address. The argument audit process is retrieved from a drop-down

list that dynamically queries what plug-ins are available and is an Active Record

model object. This is to minimize the chance that an invalid plug-in is selected.

Inside the initialize method, the proper plug-in is imported into the runtime.

Require is similar to #include in C, but a large difference is that it is not a

keyword, it is a method and as such can be used any place in the program. The

next line simply ensures the beginning of each word in the name is capitalized.

This is necessary because in Ruby a class name is a constant and constants are

denoted by the name beginning with a capital letter. The last line in initialize

takes the class name as a string and calls the constructor as if it were a class. In

Ruby, variables that begin with the sigil @ denote instance variables, variables

with no special character are local variables.

The method called run, controls the flow of the program. The only method

required by a plug-in is method names which must return an array of method

names as strings in order of being called. The run method then loops over the

array, dynamically calling each method. The loop terminates early if a false

value is returned by the plug-in method currently running. Any error messages

are generated by the method that returns false or can be generated in the actual

library that caused the audit to fail.

The prototype methods get fairly complex depending on the paradigm used

and will be described later.

Utilities

As the main purpose of this application is to conduct security audits, much of

the work completed for evaluation is in this area. However, there are a few

items not directly related to those goals that were implemented or stubbed out

and left as future work. This additional functionality can be used to augment

audits, or be used on its own. These extras are located in the menu bar under

27



tools. The first one is simple, it simply checks to see if the application can

connect to the database. The second item is a simple IP address calculator. It

can calculate IP address ranges from given IP addresses, subnet, or CIDR. For

example the last non-grayed item simply starts up the packet sniffer Wireshark.

More about the packet sniffer will be discussed in future work. The rest of

the items are grayed out. These include SQL Injector, metasploit, audit rule

generator, HTTP fuzzer, and Google hacking. These will be covered in future

work.

Database Structure

The structure of the database tables is kept as simple as possible. The full

diagram of the structure is located at the end of this section. Some fields in

tables are not yet implemented because they represent unimplemented features.

The “base” table is Scan, and all other tables relate to it in some way. The

pertinent information stored here is the target name. There are five other tables

that relate to Scan in a one-to one or one-to-many relationship. The only two

that directly relates to the rest of the scan are Iprange and Node. The other

three directly related, are either unimplemented or for statistics.

Iprange stores the IP address ranges as a high and low value. This assumes

a continuous IP range, but if the range is disjoint, more than one entry can be

used. Each IP address in the range(s) also maps to a Node. A node represents a

potential machine on the target network that matches the IP address. It could

represent multiple machines in a private network, or a cluster controlled by a

proxy or load balancer, these more complex situations are discussed later. The

Node has two tables, both with a one-to-many relationship. Hostinfo stores

whatever DNS information was found for this node. Port represents a port on

that specific Node. Depending on the audit, all of the possible states of the

port may be represented. These states include open, closed, and filtered among

others.

Port has two tables. One is Ostype, which holds one or more probable

28



operating systems that the node is running. The reason Ostype relates to Port

and not Node, is to help detect routers that use port-forwarding. The other is

service, with has a one-to-one relationship with Port. This stores information

on the application that is running on an open port.

The last general table is Vulnerability, which lists probable vulnerabilities for

a given service. The prototype audit only checks for vulnerabilities with services,

so there currently is no relationship with the Vulnerability table. Vulnerability

will also eventually relate to Ostype.

The other two main tables are program specific, Nikto. Which holds Nikto

scan data for specific ports and is related to Node. When further developing

support for more third party security tools, tables must be included for them.

29



Figure 3: Database Model

30



Prototype Evaluation

This section describes the two ways that NetProbe will be evaluated for this

Masters project: the audit plug-in initial design and the results of testing it

against a target with both single and multiple addresses, where the multiple

address target may or may not have continuous IP addresses. This should

provide a wide enough scope to determine not only the value of the prototype

plug-in, but should prove useful in further development. The same target will

be audited manually using the same tools.

Results between the audit plug-in and manual operation will be compared.

The most relevant areas of evaluation are the difference in the number of targets

found, and ease of use. Since the same tools are used for both the manual and

automatic audit, the accuracy of the tools used will not be different, given the

same input. The evaluation is therefore focused on the input for these tools

that is produced automatically and manually.

Prototype Audit Plugin

The initial plugin created contains four different parts that directly relate to the

basic steps of an audit. These steps as described previously are: network enu-

meration, discovery, vulnerability testing, and reporting. The implementation

of each step is detailed below.

Plugin Setup

The plug-in is a single class, with large methods that control a single-step. The

instance variables hold references to the writer classes developed to write to

the user interface and the various panels. The writer classes help decouple the

plug-in from the different areas of the user interface. This will help make it

much simpler to radically change the user interface, including changing graph-

ical libraries. This approach also supports radically changing the interface at

runtime to allow for customized interfaces for each audit step if necessary.

31



Ruby supports open classes, including core classes and modules (which are

special cases of classes). The Ruby object model looks complex but it allows

for a lot of flexibility because all classes can be changed at runtime. All classes

are instances of Class, and the superclass of Class is Module, and the top-level

class is called Object which is also an instance of Class.

Figure 4: Ruby Object Model

What this cir-

cular model says

is that all objects

in Ruby share not

only a common base

class but also a

module. There is

a module named

Kernel that holds

common function-

ality that does not

belong in an object

base class. Meth-

ods such as re-

quire, puts, exec, and fork are contained inside Kernel. By being able to open

Kernel, many types of functionality can be given to all classes within a runtime,

most of which look like new keywords. It can also be used to add globals that

are not global in the typical usage of the term. Visibility for methods and other

object members can be changed during runtime, include Ruby API classes. An

example is including the Singleton module into a class. Doing this sets many

methods to private including the constructor and adding methods related to

getting a reference to the object.

Ruby also supports closures in several ways: blocks, procs, and lambdas.

Blocks are essentially inline anonymous functions, and procs and lambdas are

both blocks that can have references to them. There are many differences be-

32



tween blocks and lambdas, but essentially, blocks don’t enforce having the cor-

rect number of arguments passed in a call, and lambdas simply just return if the

return keyword is invoked. In procs if return is used, it returns from the point

the proc was defined. This means that returning in procs is not always safe

because the return pointer may be pointing to a stack frame that was already

popped. However, all three types are closures because all variables referenced

inside the block,proc or lambda are bound to it and these bindings remain

through the entire life of the closure, no matter where they were declared or

passed.

The only oddity at the class level of the plug-in leverages the dynamic and

open nature of Ruby, as well as closures. The one piece of information that

might be needed anywhere in the plug-in and as well as application libraries is

the reference to the Scan model class. From this model, any part of the program

that is allowed to know the database structure can traverse through the models

to any point it needs to. In static languages such as C this would likely be made

available with globals with no control access or wrapped in a struct and its value

passed around as needed. In Java, it would either be stored in a static method

or the reference passed around. The problem with passing the value of a struct

or object around is that many objects and methods would have to accept this

as an argument, even if it might not always need to use it. This makes method

signatures larger, and tightly couples the models to many different classes and

modules, making the libraries harder to write and maintain.

Ruby has several methods of manipulating scopes, and one of these are used

to make the reference to Scan a controlled global variable. This is a nested

lexical scope and is sometimes called a flat scope.

1 lambda {
2 scan=n i l
3 Kernel . send : def ine method , : s c a n r e f= do | r e f |
4 scan = r e f
5 end
6 Kernel . send : def ine method , : s c a n r e f do
7 scan
8 end
9 } . c a l l

33



Listing 2: Controlled ’Global’ Variable

The lambda is created and instantly evaluated. Inside the block two methods

are created dynamically that closes over the reference scan. which is now scoped

in the two new Kernel methods and is accessible nowhere else. This makes the

scan reference available everywhere in the application once the lambda is run

and the reference set. The only issue in using this method is making sure that

scan is not changed by another script running in parallel. The above code does

not handle this currently because there are important implications to deal with

when deciding whether or not to allow concurrent scans. This decision should

wait until one of the approaches being tested is decided upon.

The send method allows for sending messages to any available method, this

is called dynamic dispatch. This allows for two techniques: deciding at runtime

what method to run and it gives the ability to call private methods. In both

cases a message is sent to the private Kernel method define method, which is one

of the built in methods to dynamically create methods. scan ref, and scan ref=

are the two method names, and in the case of scan ref= the block argument is

the argument for the newly created method.

An interesting property of Ruby is that mutator methods that end in ’=’

can be called in various ways. Such as: scan ref= var and scan ref = var. This

allows for a more natural syntax.

Other information is collected and acted upon when the audit initializes.

A reference to each GuiWriter used is initialized and various accessors and

mutators are dynamically created. GUIWriter is implemented in Java and is

in the GUI JAR file. GUIWriter can connect to any swing component that

supports being written to. Examples include JTable and JTextArea. This

allows maximum flexibility in creating user interfaces. This code exists in the

Audit class, which is the base class for any plugin. The following code shown

below creates all the dynamic methods along with an example: creating an

append writer.

34



1 de f s e l f . s e t w r i t e r s w r i t e r s
2 wr i t e r s . e a ch pa i r do | name , r e f |
3 c r e a t e a c c e s s o r name , r e f
4 c r e a t e w r i t e r name , r e f , f a l s e
5 c r e a t e w r i t e r ”#{name} append” . to sym , r e f , t rue
6 c r e a t e c l e a r name , r e f
7 end
8 end
9

10 de f s e l f . c r e a t e w r i t e r name , r e f , append
11 def ine method name do | s t r |
12 i f append
13 r e f . appendText s t r
14 e l s e
15 r e f . writeText s t r
16 end
17 end
18 end

Listing 3: Setting up GUI accessors and mutators

This code takes a hash with the name of the writer as the key, and the value is

the reference to the writer object. The code then creates accessors, writers, and

methods to clear all text from the GUI widget. Accessors, like the name implies

returns a reference to the GUI writer. The writer methods automatically take

care of common writing functionality such as appending, newlines, and moving

the carat to overwrite from the top of the text box.

This approach allows for the script writer to have full control of the interface

as there are no static, predefined method names of writing to the GUI within

the plugin libraries. If a custom panel only has one place to write to(the default

has two), it is created here. If the plugin writer needs more, he may create and

name them at will and they will be accessible. Note that there is still just the

GUIWriter available it is the reference name to the functionality that is being

created via dynamic wrapper methods.

Besides, the flexibility this brings it makes the references “global” in the

plugin object without having to maintain object variables or pass them between

methods within children of Audit.

The hash is created when set writers is called:

1 Audit . s e t w r i t e r s : message=>@panel . getMessageArea , : r e s u l t s=>@panel
. getResu l t sArea

35



Listing 4: Setting up GUI accessors and mutators

The target is also validated and stored if it is in fact a valid IP or IP range, or

valid domain name format. When everything previously listed is initialized the

first audit step is called. Each interface component that can be written during

runtime is required to implement getMessageArea() and getResultsArea() to

properly access the current audit interface panel. How this method creates

flexible interfaces is simple. If a panel on the interface has one or more than

the current the writable widgets, the only code in the audit script that needs

to be changed is the hash created in the set writers() call listed above. This

also allows a team working on this project to split the work between audit and

library writing and interface design. All that the audit writers need to know

from the interface team is the name of the methods to access the writers and

the purpose of each writer.

Enumeration

The code for network enumeration is a fairly straightforward imperative-like

programming task with a class in the application library for enumeration per-

forming the bulk of the work including writing messages to the interface and

saving the results to the database. What is written to the interface however, is

determined by the plug-in writer. This is useful to plug-in developers that want

different levels of reporting, instead of being forced to use hard-coded messages.

The plug-in has references to the interface writers and several helper classes.

The relevant model classes are used to store the data that is instantiated for

the enumeration libraries to use. It also needs to get the Scan reference.

As a convenience, a class that dynamically manages the enumeration process

was created called Runner. This class takes an array of strings with the name

of the enumeration steps that need to run on the target, as well as executing

the interface writer procs, that are passed to this class as a hashtable. The

string correlates exactly to a method name. This allows for maximum flexibility

36



in being able to easily write dynamic access to various levels of detail in the

enumeration scan. The only methods in the enumeration library thus far are all

used in this scan, and covers the most basic needs. These methods are ip range,

reverse dns, name dns, add, confirm nodes, ip dns, and save!.

• ip range: Calculates the range of the IP addresses when giving a CIDR.

• reverse dns: Attempts to match an IP address with one or more domain
names.

• name dns: Performs a DNS search for the given domain name

• add: Adds the data to the Scan model wrapper.

• confim nodes: Displays the popup to confirm all nodes found in the test
and to eliminate invalid nodes.

• ip dns: Performs a reverse DNS search for MX, and DNS records.

• save!: Takes the results stored in the wrapper class in the appropriate
models and saves it to the database.

The enumeration code written for the plugin contains two parts. Code to

report progress by writing messages to the interface and the code to run the

enumeration scan. The interface code is implemented as a hash of Procs which

is called by the enumeration application libraries.

1 procs = {}
2 ip range msg = {}
3 ip range msg [ : begin ] = Proc . new { r e su l t s append ”IP address ranges

: ”}
4 ip range msg [ : end ] = Proc . new { r e su l t s append ”Added a l l ip

address ranges ”}
5 procs [ : i p range ] = ip range msg
6 r ever se dns msg={}
7 r ever se dns msg [ : begin ] = Proc . new do
8 r e su l t s append ”Performing r ev e r s e DNS”
9 r e su l t s append ”A popup w i l l appear to conf i rm domain names”

10 message append ”Performing r ev e r s e DNS via nmap l i s t scan”
11 end
12 r ever se dns msg [ : end]= Proc . new { r e su l t s append ”Reverse DNS

completed”}
13 procs [ : r e v e r s e dn s ]= rever se dns msg

Listing 5: Interface messaging

The key for each hash element denotes where and when to execute the proc.

For example the ip range key points to a hash with a begin and end key that are

executed during the ip range evaluation. This method allows for more detailed

37



feedback during runtime. Otherwise this has to be done in the audit plugin

itself which would mean less feedback, or to get the same level of feedback the

audit plugin writer would have to explicitly run each substep within an audit

step.

This code only prints to the results box which is the bottom text box in

the interface. To use this method to also print to the result text box, which is

the right-hand side of the interface, adds a lot of complexity. To avoid this a

reference to the result text box is simply passed into the Runner constructor

and saved as a Class instance variable. Initially all writing to the interface was

done without procs and there may still be some writing to the results text box

in the original way that was left in the code. This is not an issue until the

interface writing method is evaluated as the ideal solution. It may even be the

ideal solution bcause it offers detail feedback as well as a robust custom system.

The code to run the enumeration scan is much simpler with all the heavy

work done by a method in Runner called run. The constructor to this class

takes in a list of features requested and the target(s).

1 run=Enumeration Runner : : Runner . new( @enum features , ta rge t data ,
@scan , get message , g e t r e s u l t s )

2

3 begin
4 run . run procs
5 r e s cue => e
6 Java : : views . main . popups . Message . showConfirm e . inspect , ”problem”
7 r e turn f a l s e
8 end

Listing 6: Enumeration Audit Script

The Runner object is instantiated in the first line. The first argument is

a hardcoded list of symbols of the feature name. In this case: [:ip range, :re-

verse dns, :name dns, :add, :confirm nodes, :ip dns, :save!]. Which is every

currently implemented enumeration feature

The run method is called which runs each step. If an exception is thrown, a

Swing popup message is displayed. The run method in Runner is straightforward

and includes the code for executing the Procs created to write to the interface.

38



1 de f run gu i w r i t e r
2 arg=n i l
3 @features . each do | f e a t u r e |
4 wr i t e r = gu i w r i t e r [ f e a t u r e ]
5 wr i t e r [ : begin ] . c a l l un l e s s wr i t e r . n i l ?
6 arg=Enumeration Runner : : send ( f ea ture , arg )
7 wr i t e r [ : end ] . c a l l un l e s s wr i t e r . n i l ?
8 end
9 end

Listing 7: Running the Enumeration Scan

Discovery

The implementation of discovery attempts to find out what ports are open and

closed, and if open, what service is running on it. Further attempts are made

to not only discern what OS is running, but to check each open port to help

determine if there are several machines behind a router or switch with the target

IP address. This will assist in future network mapping work. The difficulty is

to get a fairly reliable OS scan, there needs to be one or more closed ports on

the machine. This presents a problem for getting reliable results since any data

returned from trying to access a closed port may be for a different machine

if port forwarding is being utilized. Reliable results mean not only accurately

determining the operating system, but only returning that operating system.

Unreliable scans often give a large list of possible operating systems or just a

generic name for the OS, such as Windows or Linux. These sorts of results have

little use. To be able to successfully attack a system or find a list vulnerabilities

these general results are not very helpful.

A future workaround may be to use passive scanning. This implementa-

tion uses nmap exclusively and therefore only offers active scanning. Another

workaround is to closely look at the results of a service scan. Quite often web

servers and SSH implementations are verbose and will tell what OS they are

running on.

This initial implementation leaves more work for the plug-in writer because

the underlying libraries assume a single port. This puts the responsibility of

dealing with lots of results from many ports on a list of nodes on the plug-

39



in writer. This may allow for more flexibility, at the cost of more work. An

alternate way of dealing with this is by passing in an array of Nodes, and also a

block or Proc detailing the scan and how to save the data. This is the closer to

the “Ruby way” to do it. It is similar to method used in Enumeration, except

instead of static methods called dynamically according to the steps in the list,

anonymous functions are used. Since blocks and Procs are closures, this may

give even more flexibility in writing plug-ins.

Writing information is handled differently as well, instead of storing the

messages in Procs, all output is written in the discovery method in the plug-in.

This simplifies the libraries, at the cost of not being able to give messages about

any problems or events of interest in the libraries. Information about starting

and completing scans on each node are about the most detailed information

that can be given in the plug-in itself.

The library that performs the scan has facilities to dynamically run different

types of scans. Because the results returned can vary greatly depending on the

scan type a system was developed to easily add a custom parser. The plug-

in writer does not have to write the parser, but easily could be done using a

block. The parsers are part of the external Nmap library. Currently, the parser

code is an if-else structure. This is fine since only a few scans are currently

supported, but each parser should be separated out in their own classes or

modules eventually. The only exception is the service parser which is in its own

class. This parser doesn’t need to change over the various scans.

Since one of the goals of this project is to lessen the learning curve of learning

these tools, and with Nmap learning the command-line arguments is a big part

of this curve, the type of scan is called by method name which handles getting

the correct arguments to the program that controls the Nmap scans. However,

it does not relieve the plug-in writer from knowing what scan to use in each

situation, which is valuable knowledge. To implement this, a dynamic facility

in Ruby is used: method missing. What this method does is that it gives a way

to properly handle a call to a method that does not exist. This allows methods

40



to be dynaimcally created to fit a specific need during runtime. To simplify this

process a class called Scanner was created that actually contains the command

line arguments needed to run the requested scan. Each method assigns the

arguments to an instance variable. This is not necessary, and could be easily

done in method missing, but this was a good way to make supported method

names and argument lookups easy to find and understand. The method names

follow the convention “scan-type” ”options” scan. For example: syn scan for a

simple scan that uses syn packets, or syn service scan which is a syn scan that

also tries to figure out what service is running at the open port.

The supported scans also have optional arguments that are not initially

included. These options include timing and stealth to help reduce scan time

and to try to evade intrusion detection systems. They are not included to make

evaulation less complex and error prone. TCP scans are straightforward because

of the three-way handshake required to set up a connection. If the port is open,

the protocol guarantees that a response will be received. UDP does present a

serious problem. The protocol makes no guarantees of a response. As it is a

connectionless protocol the three-way handshake does not occur. This not only

makes UDP results inconsistant, it makes the scans last much longer. A default

UDP scan can take hours and a complete scan may take days. Because of the

time required for a UDP scan the prototypeaudit only tests three UDP ports.

To assist users with understanding tool output, feedback via the interface is

used. All messaging is done by the audit script. Because of this the size of the

discovery script is very large. For brevity messages meant to be written by the

GUI are removed from the listing below.

1 nodes=@scan . nodes
2

3 scans = Discovery runner : : Scanner . new
4 nodes . each do | node |
5 r e s u l t s = [ ]
6 node=node . node
7 run = Discovery runner : : Runner . new node . ip addr , scans
8 r e s u l t s << run . s yn ve r s i on s c an ( por t s )
9 r e s u l t s << run . udp ve r s i on scan ( ” −p161 ,162 ,2049 ” )

10

11 r e s u l t s . each do | r e s |

41



12

13 c l o s ed = re s . c l o s ed
14 open = re s . open
15 os=n i l
16 un l e s s c l o s ed . n i l ? && open . n i l ?
17 i f open . s i z e > 0 and c l o s ed . s i z e > 0
18 os = OS scan . run port ( node . ip addr , r e s . open , c l o s ed

[ 0 ] , get message )
19 end
20 end
21

22 open port s = r e s . open
23 c l o s e d po r t s = r e s . c l o s ed
24 o p e n f i l t e r e d = re s . r e spond to ? ( : o p e n f i l t e r e d ) ? r e s .

o p e n f i l t e r e d : [ ]
25 s e r v i c e s = r e s . s e r v i c e
26

27 open port s . z ip ( s e r v i c e s ) do | port , s e r v i c e |
28 db = Db port . new node . id , port , ’ open ’
29 db . s e r v i c e s s e r v i c e un l e s s s e r v i c e . n i l ?
30 db . o s type s ( os [ port ] ) un l e s s os . n i l ?
31 db . save !
32 end un l e s s open port s . n i l ?
33

34 un l e s s o p e n f i l t e r e d . n i l ? or o p e n f i l t e r e d . s i z e == 0
35 o p e n f i l t e r e d . each do | port |
36 db = Db port . new node . id , port , ’ open | f i l t e r e d ’
37 db . save !
38 end
39 end
40

41 un l e s s c l o s e d po r t s . n i l ? or c l o s e d po r t s . s i z e==0
42 c l o s e d po r t s . each do | port |
43 db = Db port . new node . id , port , ’ c l o s ed ’
44 db . save !
45 end
46 end
47 end

Listing 8: Discovery Scan

Line 3 creates the object holding the names of the supported scans. Line 4

iterates over each node. As shown, the current node is scanned and the results

saved before moving on to the next node. A popup giving the option of what

ports to run is given, if nothing is entered the default 1000 port Nmap scan is

run. Line 8 is the first example of using method missing, syn version scan does

not exist in the Runner class. The Runner class will be listed in its entirety.

Next the UDP scan is run. As noted, only three ports are tested and is

hardcoded. In a robust audit, the same ports, typically as off them, would be

run for both TCP and UDP scans. At this point, the results of both scans are

saved in a list. This list is now iterated over in line 11. At this point, a list

42



of open and closed ports are made and this information is used to determine

whether to run a scan to check for the operating system running.

The Nmap parser returns the results in a hierarchy of objects which is where

methods such as open filtered() come from. On line 24 of the above code a

method call respond to? is called. This method returns true if the argument

passed in exists as a method. If a scan didn’t find a particular set up data, the

object or methods would not be created. This is a tradeoff when implementing

dynamic code. The remaining code sets up the data in the proper node, port

and service wrapper classes and then saves the data to the database.

The following code shows the Runner class in the Discovery module.

1 c l a s s Runner
2 de f i n i t i a l i z e node , scan
3 @node=node
4 @scan=scan
5 end
6

7 de f method missing name ,∗ args
8 super i f ! @scan . re spond to ? ”#{name}”
9

10 arg = @scan . send ”#{name}”
11 args . each { | a | arg += ”#{ a}”} un l e s s args . n i l ?
12 scan = Port scan . new(@node , arg )
13 scan . run
14 scan . parse @scan . type
15 end
16 end

Listing 9: Discovery::Runner class

The object initializer has two arguments: the node to be tested and a ref-

erence to the Scanner object. The reason it is passed in and not created in

Runner is to allow the audit writer to create his own class if it is necessary. The

first argument in method missing is the name of the method as a string. The

interpreter passes this name from the method call. The second method is an

array of arguments passed in as if each element was a method argument. The

first line ensures that the method name is supported. If the method does not

exist an exception is raised via the overriden method missing. The next line

uses the method name to call the Scanner object to get the appropriate Nmap

argument. The next line iterates over any passed arguments and appends it to

43



the Nmap argument. The scan is then run, parsed and the results returned.

This code will support any and all scan types that can be implemented. As

noted before the Scanner class really isn’t necessary, it could be worked into

method missing as a series of if statements, but the way it is implemented is

easier to understand.

In future work, saving data should be placed in a library as it is fairly

complicated. The reason is that the database only saves certain service states to

save space. For basic TCP scans, the three possible states are open, closed, and

filtered. Open is interesting and because certain information can be ascertained

by the response that signifies a closed port it is also added to the database.

Filtered in itself is not interesting, and would do nothing but potentially add

tens of thousands of database entries to a single network scan. There are also

some special cases that need to be addressed in more details such as the UDP

Nmap state open—filtered.

Vulnerability Testing

There are many possible types of vulnerability scans that can be performed.

Passive scanning, querying online vulnerability databases, using programs that

test for known vulnerabilities such as Nessus, and more active methods that

can find both known and unknown vulnerabilities via brute force methods like

injecting shellcode or running fuzzers. Each method can be extremely complex.

There are two implemented tests in NetProbe. The first is querying on-

line vulnerability databases, more specifically the Open Source Vulnerability

database(osvdb.org), It uses a simple format for programmatically submitting

queries. It is in the form osvdb.org/api/¡API KEY¿/args and is run using the

HTTP class in the Ruby library as it is much simpler than the Java version. The

API key is assigned after registering, and grants 100 requests a day by default.

The key currently being used has no limit which was granted by the OSVDB

administrators.

Another way to access the data is to download the entire database, which

44



solves the limited access problem and also simplifies access as requests no longer

have to be HTTP requests. The downside is that the database is large and it

changes often requiring downloading the entire database several times a week.

The current implementation assumes HTTP access. Since new vulnerabili-

ties can be added every time there are no request savings by caching the results

over time, however on any given scan, results can be used to optimize the num-

ber of requests if there is the same service running on multiple nodes in the

same network.

The second vulnerability test that has been implemented for the prototype

makes use of the web vulnerability scanner called Nikto. This program is used

to ferret out various levels of information about a web server. It can also be used

to different degrees in testing out web applications. It also supports HTTPS.

There are various levels of configuration, from the simple such as testing different

ports to more complex ones like CGI directives. For the default scan the default

scan, ports 80 and 443 are tested on every node in the scan when they are open.

Unlike the OSVDB tests, only one test per node is run. The reason for this is

that both ports are typically bound to the same web server, this saves a lot of

time without loss of information.

Vulnerability Testing Implementation

The implementation of the prototype mimics a domain specific language

(DSL) approach which results in very little code being need to be written in the

plug-in. To mimic a DSL, the methods used to run the scan are dynamically

created and placed in the Kernel module. In a real DSL setup, these methods

would likely be created in a separate module file which is then read in like a

text file and then treated like code. The reason it is not done this way is that

there are several complications to dynamically reading the DSL module when

the rest of the scan is not done this way.

Both the OSVDB and Nikto scan controllers are placed in the Kernel module.

However, The classes that do the actual work are not dynamically created, but

45



are directly accessed by the new methods in Kernel.

1 lambda {
2 messages={}
3 scan=vuln scan
4 Kernel . send : def ine method , : vu ln scan= do | s |
5 scan=s
6 end
7

8 Kernel . send : def ine method , : vu ln scan do
9 scan

10 end
11

12 Kernel . send : def ine method , : message= do |msg |
13 messages [ msg . type ]=msg
14 end
15

16 Kernel . send : def ine method , : c l e a r mes sage s do
17 messages . c l e a r
18 end
19

20 Kernel . send : def ine method , : w r i t e r= do | gu i w r i t e r |
21 wr i t e r=gu i w r i t e r
22 end
23

24 Kernel . send : def ine method , : r un g en e r i c o s vdb s e r v i c e s c an do
25 scan . nodes . each do | node |
26 por t s=node . por t s
27 por t s . each do | port |
28 i f ! port . s e r v i c e . n i l ? and ! port . s e r v i c e . product . n i l ?
29 wr i t e r . appendText ”Running OSVDB search f o r #{node .

ip addr }:#{ port . port }”
30 GUI ut i l s . p rog r e s s runne r wr i t e r do
31 s=Osvdb scan . new port . s e r v i c e . product , wr i te r , port . port
32 next un l e s s s . scan
33 s . parse
34 s . save ! port . s e r v i c e
35 end
36 end
37 end
38 end
39 end
40

41 Kernel . send : def ine method , : run n ik to s can do | c g i d i r |
42 scan . nodes . each do | node |
43 por t s =[ ]
44 node . por t s .map { |p | por t s << p i f i s h t t p op en po r t p }
45 next i f por t s . n i l ? or por t s . s i z e == 0
46 p o r t s t r=’ ’
47 por t s . each { | port | p o r t s t r+=port . port . t o s+’ ’ }
48 wr i t e r . appendText ”Scanning #{node . ip addr } por t s #{p o r t s t r

}”
49 GUI ut i l s . p rog r e s s runne r wr i t e r do
50 n=Nikto scan . new node , ports , c g i d i r
51 n . scan
52 n . parse
53 n . save !
54 end
55 end
56 end
57

58 Kernel . send : def ine method , : i s h t t p op en po r t do | port |

46



59 ( port . port==80 or port . port==443) and port . s t a tu s==’ open ’
60 end
61

62 } . c a l l

Listing 10: Vulnerability Scan DSL

Each method adds either utility functionality or a vulnerability scan. This

method is like the flattened scope used to store the reference as a controlled

global. The OSVDB and Nikto scans are standard object-oriented scans. The

cgi dir argument in the run nikto scan method allows for a variety of configura-

tion options. Each scan type returns an XML file which is parsed as a hierarchy

of objects and then stored in the database much like the Nmap results.

While each HTTP(S) port is accounted for seperately in the database, all of

the discovered HTTP(S) ports in a single node are run using Nikto at the same

time. This approach makes the audit script very concise and greatly increases

the speed of the Nikto scan without sacrificing accuracy. Again, all code that

produces output to the GUI is initially produced in the script and is omitted

from the below listing.

1 OSVDB. osvdb key= Vu ln e r ab i l i t y . osvdb key
2 Vulne rab i l i t y Scan : : setup s c a n r e f
3 Vulne rab i l i t y Scan : : w r i t e r= get message
4 r un g en e r i c o s vdb s e r v i c e s c an
5 run n ik to s can n i l

Listing 11: Vulnerability Audit Script

The OSVDB key is retrieved from the database and passed to the external

OSVDB library. The next line invokes the lambda shown above, and the inter-

face writer is passed into the DSL. The last two lines show all that is needed

to run a complete vulnerability database and nikto scan. The downside to this

approach is that it may decrease the flexibility of the vulnerability scan. But

it is a relatively simple matter to add functionality. A new method is added

in the DSL to run it, and outside of the DSL methods to run, parse and save

the results are needed. It does turn adding new functionality into a short list

of steps.

47



Reporting

The last step in the default scan is documentation and reporting. This is ar-

guably the most important step as it recreates the steps taken and displays the

results. It can also act as a guide for further evaluation and as such the report

should be in an easy to edit format. It should also be marked up in a format

that makes it easy to read and is clear and concise enough to be included in a

final audit report to a client. The code used to create this report should even-

tually be flexible enough to accept data from anywhere, even a standalone test

such as the ones that can run under the Tools menu bar item.

The initial reporting code has just enough features to produce a report using

data from the default audit already described. The methods used are standard

Ruby techniques: mixins and singleton methods. Mixins are a Ruby compromise

between multiple inheritance and Java interfaces. It is a module that is included

in a class. When a class includes a module, all of its methods are now available in

the classes object as if the methods were implemented in the class. It is possible

for the methods that were mixed in to be able to access members of the class or

object that included them. It is also possible to define object instance variables

in these modules that the object that mixes in the module can use as if they

were object members. A simple description of mixins are Java interfaces with

implementation already defined. This is a very powerful feature that adds a lot

of flexibility and does not require much boilerplate code like Java interfaces do.

This functionality explains why enumerable classes(Array, String, even Hash)

of any type(s) can sort themselves with the same sort function that is mixed in

from the Enumerable module. This sort function optionally takes a block which

allows for custom definitions of order without writing a new sort method.

Singleton methods are methods that only exist in a given object. These

methods are added or opened after instantiation. This method gives the ability

for specific audit techniques to have its own reporting code that can be inserted

into the report object at run time. This produces a system that will only

have the functionality it needs to complete the current task without a lot of

48



extraneous code cluttering up the report class file. Here is a simple example of

a singleton method:

1 a=Object . new
2 b=Object . new
3

4 de f a . my method
5 puts ” s i n g l e t on method”
6 end
7

8 a . my method #pr i n t s s i n g l e t on method
9 b . my method #r a i s e s undef ined method e r r o r

Listing 12: Singleton Method Example

In addition to using Singleton methods, which are built in to the language,

the Report class has two methods of generating the functionality needed to

prepare and save the report. The first method is using a built in template

system. But informing the Report object what file type it is preparing, it can

automatically mixin the modules it needs. The second is to manually mixin

the appropriate modules. The former method is less flexible, but easy for the

audit writer to implement since the templates are already provided. The latter

method is very flexible, at the cost of use of use.

The current implementation creates Model objects to directly read from the

database and then formats the data into the appropriate file type. Currently,

there are two file types supported by the reporting module: text and PDF.

This means there is a template for each type. This template handles the actual

formatting of the data. For the initial evaluation a PDF is generated, but this

ignores many possible uses for the reporting module which will be discussed in

detail in future work.

The report class is called Report and is very simple. The report specific parts

contains code to setup and save the report. Save is actually done in the specific

module that writes to disk. The reason for this is because different file formats

might use a third party library whose save function may have a different name

then other libraries. This makes functionality that all file types need “cross-

format”. The rest of the code in Report exists to simplify the process of mixing

in modules.

49



1 c l a s s Reports
2 a t t r a c c e s s o r : f i l e
3 de f i n i t i a l i z e f i l e p a t h , type=n i l
4 @f i l e = g e t f i l e t y p e type
5 @path=f i l e p a t h
6 end
7

8 de f s a v e f i l e
9 save !

10 end
11

12 de f s e l f . mixins ∗modules
13 modules . each do |mod |
14 s e l f . send : inc lude , mod
15 end
16 end
17

18 de f add module ∗modules
19 modules . each { |mod | s e l f . extend mod}
20 end
21

22 de f custom add
23 i f b l o ck g iv en ?
24 y i e l d @ f i l e
25 end
26 end
27

28 de f s e l f . custom pdf f i l e p a t h , a r r b l o c k s
29 r=Reports . new f i l e p a t h , : pdf
30 a r r b l o c k s . each do | block |
31 block . c a l l r
32 end
33 r . save !
34 end
35

36 pr i va t e
37 de f g e t f i l e t y p e type
38 i f type==:text
39 Reports . mixins Text
40 Text : : setup
41 e l s i f type==:pdf
42 Reports . mixins PDF
43 PDF: : setup
44 end
45 end
46 end

Listing 13: Report class

In line 2, an accessor and mutator is created in case a template mixin is not

automatically used. The initialization starts at line 3, the path to where the

file will be saved is passed in and optionally the file type. The file type is a

symbol. Currently, the only two valid symbols ate :text and :pdf. If anything

else is passed in, it has the same effect as if nothing were and the file mutator

will need to be called manually. Note that references to file and path are created

50



in initialize . For mixins to be able to use them they must follow the naming

conventions for the mixed in methods to be able to use the object references.

Lines 12 and 18 define the two mixin helper methods. Normally, a module is

mixed in statically. The problem with this method is that all objects will have

the same functionality, which is something our report class does not want. The

goal here is to define a common interface without having to repeat a lot of code,

or have many different types of reporting classes that all have different method

names and arguments.

The first method, mixins is a class method that takes a variable number

of arguments. Each argument must be a module. The method iterates and

includes each module. This is similar to the normal way of including modules.

Once the module is included the methods are available across all instances. If

only one report type is going to be generated this is an ideal method, and is

the assumption of the initialize method when a type is given. It is possible to

remove the mixed in methods via a library called mixico or by removing them

manually, neither is currently implemented.

The second method, add module also mixes in modules, but does it in a

way that makes the mixed in methods Singleton methods. This is the preferred

method when multiple types of files need to be generated and will be more useful

in the cases where the audit writer prefers more control over ease of use.

The next two methods are convenience methods. The method custom add

allows for passing in a block that can use the reference to file to write or format

it in some way. The other methodcustom pdf is simply another way to create

the PDF, this time just using an array of Proc. A use for this is if methods

of each audit step were created to handle its own reporting, this functionality

could return Proc’s to be handled by Report later on.

Since the prototype audit generates a PDF, the PDF module will be de-

scribed in detail. This module is mixed into Report.This module uses the Prawn

library which is the defacto standard Ruby PDF library. It is very complex, but

this module simplifies it to meet the fairly simple needs of this project by pro-

51



viding default layout information.

1 module PDF
2 de f s e l f . setup
3 Prawn : : Document . new
4 end
5

6 de f header t ext
7 @f i l e . t ex t text , : s i z e =>20, : a l i g n=>: center , : s t y l e=>:bold
8 end
9

10 de f paragraph text , i n d e n t l e v e l=0
11 @f i l e . indent (20∗ i n d e n t l e v e l ) do
12 @f i l e . t ex t t ext , : s i z e=>10
13 end
14 end
15

16

17 de f t ab l e data
18 @f i l e . t ab l e data ,
19 : p o s i t i o n => : l e f t ,
20 : column widths => { 0 => 100 , 1 => 400} ,
21 : b o r d e r s t y l e => : gr id ,
22 : v e r t i c a l p add i ng => 10
23 end
24

25 de f custom text , s i z e , a l i gn , s t y l e
26 @f i l e . t ex t text , : s i z e=>s i z e , : a l i g n=>a l i gn , : s t y l e=>s t y l e
27 end
28

29

30 de f newl ine l i n e s=1
31 @f i l e . move down( l i n e s ∗@f i l e . f o n t s i z e )
32 end
33

34 de f save !
35 @f i l e . s t r oke
36 @f i l e . r e n d e r f i l e @path
37 end
38

39 de f h o r i z o n t a l r u l e width=0.5
40 @f i l e . l i n e w id th=width
41 @f i l e . h o r i z o n t a l r u l e
42 end
43

44 de f h o r i z o n t a l l i n e x1 , x2 , width=0.5
45 x1=0 i f x1 . n i l ?
46 x2=@ f i l e . bounds . width i f x2 . n i l ?
47 f i l e . h o r i z o n t a l l i n e x1 , x2 , width
48 end
49 end

Listing 14: PDF Module

The method setup simply instantiates Prawn and returns the reference.

Other than the save! method, the rest of the methods provide a wrapper around

a common PDF element, such as header, paragraph, table and horizontal lines.

For example, to create a table, call the method table and pass in an array that

52



describes the table layout and data. To draw a horizontal line, call horizon-

tal rule with an option width value. There is also a method to set custom text

attributes. If more advanced control over the file is needed during runtime, the

PDF module can be opened or other modules can be mixed in.

This module contains no file data details, only attributes. The actual data

can be generated by the audit writer or through the use of predefined tem-

plates. Using predefined templates is easiest, but it is difficult to cover all

possible database models and plugin functionality. Using the dynamic function-

ality described in the Report class a mix of both approaches could be used.

The current implementation uses a predefined template. This class creates a

Report instance, fetches the data from the database and controls the writing

procedure. Listing 15 shows the code that does this.

1 module Report ing
2

3 c l a s s Default PDF Report
4 de f i n i t i a l i z e path , db
5 @report = Reports . new path , : pdf
6 @db=db
7 end
8

9 de f runner
10 heading
11 b a s i c i n f o
12 nodes=@db . nodes
13 nodes . each { | node | node data node }
14 @report . s a v e f i l e
15 end
16

17 pr i va t e
18 de f heading
19 @report . header ”Network Topology and Secu r i ty Evaluat ion ”
20 @report . custom ”Generated by NetProbe” , 16 , : center , : bold
21 @report . custom Time . now . s t r f t ime ( ’%b %d , %Y’ ) , 14 , : center , :

bold
22 @report . newl ine 3
23 end
24

25 de f b a s i c i n f o
26 @report . custom ”This r epo r t d e t a i l s the r e s u l t s o f a #{@db .

aud i tp ro c e s s . name} scan aga in s t the network
27 #{@db . t a r g e t } .
28 This network has #{@db . nodes . s i z e } node#{’ s ’ i f @db . nodes .

s i z e >1} that #{@db . nodes . s i z e==1 ? ’was ’ : ’ were ’}
29 scanned . ” , 10 , : center , : i t a l i c
30 @report . newl ine 3
31 @report . paragraph ’The f o l l ow i ng t ab l e s break down the

r e s u l t s o f the scan . ’
32 @report . newl ine 3

53



33 end
34

35 de f node data node
36 data = [ ]
37 data << [ : t ex t=>”Node Address : #{node . ip addr }” , : co l span=>2,

: a l i g n=>: c en t e r ]
38 node . por t s . each do | port |
39 data << [ ’ Port ’ , ”#{port . port } ” ]
40 data << [ ” Status ” , port . s t a tu s ]
41 s e r v i c e data , port . s e r v i c e , port . port un l e s s port . s e r v i c e .

n i l ?
42 #os type data , node . o s type un l e s s port . ostype . n i l ?
43 end
44 n ikto data , node . n ikto un l e s s node . n ikto . n i l ?
45 @report . t ab l e data
46 @report . newl ine 5
47 end
48

49 de f n ikto data , n ikto
50 data << [ : t ex t=>”Nikto Resu l t s ” , : co l span=>2, : a l i g n=>: c en t e r

]
51 data << [ ” Server Data” , n ikto . s e r v e r i n f o ]
52 data << [ ”SSL Ciphers ” , format ( n ikto . s s l c i p h e r s ) ]
53 data << [ ”SSL I s s u e r s ” , format ( n ikto . s s l i s s u e r s ) ]
54 data << [ ”SSL Data” , format ( n ikto . s s l i n f o ) ]
55 data << [ : t ex t=>”#{n ikto . n ik to i t ems . s i z e } po t en t i a l i s s u e s

found . ” , : co l span=>2, : a l i g n=>: c en t e r ] i f
56 n ikto . n ik to i t ems . s i z e > 0
57 n ikto . n ik to i t ems . each wi th index do | ni , index |
58 data << [ : t ex t=>” I s su e #{index+1}” , : co l span=>2, : a l i g n=>:

c en t e r ]
59 data << [ ”OSVDB ID” , ”#{format ( n i . osvdbid ) } ” ]
60 data << [ ”OSVDB Link” , format ( n i . o svdb l ink ) ]
61 data << [ ” Desc r ip t i on ” , format ( n i . d e s c r i p t i o n ) ]
62 data << [ ” I s su e Link” , format ( n i . name l ink ) ]
63 end
64 end
65

66 de f s e r v i c e data , s e r v i c e , port
67 data << [ : t ex t=>” Se rv i c e In format ion f o r Port #{port }” , :

co l span=>2, : a l i g n=>: c en t e r ]
68 data << [ ”Name” , s e r v i c e . name ]
69 data << [ ”Vers ion ” , s e r v i c e . v e r s i on ]
70 data << [ ”Product” , s e r v i c e . product ]
71 data << [ ”Operating System” , s e r v i c e . os ]
72 data << [ ”Owner” , s e r v i c e . owner ]
73 data << [ ”Other” , s e r v i c e . other ]
74 r e turn i f s e r v i c e . v u l n e r a b i l i t i e s . n i l ? or s e r v i c e .

v u l n e r a b i l i t i e s . empty?
75 vu l n e r a b i l i t y data , s e r v i c e . v u l n e r a b i l i t i e s
76 end
77

78 de f v u l n e r a b i l i t y data , vuln
79

80 end
81

82 de f format data
83 ( data . n i l ? or data . s i z e==0) ? ”None” : data
84 end
85

86 end
87 end

54



Listing 15: PDF Reporting class

The methods initialize and runner setup and control the operation. All

of the rest of the methods fetch the data and call the appropriate methods from

the PDF class. As long as this class is kept up to date with the database

models, creating PDF reports for any audit plugin is simple.

1 de f r epo r t
2 path=” r epo r t s/#{ s c a n r e f . t a r g e t } . pdf ”
3 r epo r t=Reporting : : Default PDF Report . new path , s c a n r e f
4 r epo r t . runner
5 Apprunner : : r u n n e r c l o s e a l l ( ’ acroread ’ , path )
6 end

Listing 16: Report class

There are several ways to get the path, in this case it is simply hardcoded

and named after the target that was entered at the start of the scan. The ap-

propriate reporting class is instantiated and then run. The last line is optional.

Apprunner is an external library that provides basic external program execu-

tion capabilities. The method runner close all starts the given program with

the path to the PDF file and then automatically closes the program’s output,

input and error pipes. In this case the method call automatically opens the file

using Acrobat Reader.

Examples of generated reports are contained in the appendix.

Targets

The evaluation will consist of running the automated and manual scans against

two targets. The first is maplewoodsoftware.com with kind permission from

Maplewood Software President John Janzen and the other is mccombsonline.net.

The former target consists of multiple IP addresses over three non-continuous

IP ranges and on two physically separate networks. The latter target is a single

IP address pointing to a virtual machine.

55



Manual Audit

The manual audit will mirror the steps and functions of the automated audit

using the same programs. Each step will be documented and the results saved

in PDF format when possible, but otherwise plain text( e.g. .txt or .xml). No

additional scripting will be used. That is, each program run will be run with

input manually typed in. The input settings of each tool will mirror that of the

automated audit. If a default in the audit script is lacking or running manual

scans is easier to alter default, it will be noted in the results section.

Automated Audit

The automated audit will cover all the functionality previously detailed as im-

plemented and results saved as a PDF file. The default audit script has several

defaults, some of which can be altered during runtime. When default exist to

save time in scans it is only for the purpose of simplifying the report and making

demonstrations feasible. Production quality scripts will not use this rationale

for configuring default settings. The default behavior for each step is as follows:

• Enumeration

– If a CIDR is given, the addresses are calculated based on the given

IP address or resolved address of the URL.

– Each address is run through a reverse DNS scan.

– A popup displaying the URL’s are shown with the option of viewing

their whois record and removing them from the scan

– There is no user defined settings. The steps taken are entirely de-

pendent on the type of data that is discovered.

• Network Discovery

– Nmap scans are run against the defined TCP default ports for Nmap

or the user defined settings.

56



– A option to manually set ports during runtime is included.

– Only 3 UDP ports are scanned. This is because UDP scans can take

hours or days. No user intervention exists yet.

– Service scans for all open ports are run.

– If a node has at least 1 open and 1 closed port an operating system

detection scan is run.

• Vulnerability Scan

– An OSVDB scan is performed on all open ports where the service

has been found.

– The scan settings are currently hard coded and can not be altered

during runtime.

– A nikto scan against nodes that have ports 80 or 443 open is run

with no other options enabled.

– While the Nikto scan library developed does have the ability to accept

other arguments to alter the Nikto scan, there is currently not a

runtime option to do so. This is simply because these options can

increase testing time to several hours or days.

• Reporting

– A PDF of all information generated in the scan is produced and

saved with the format ¡target¿.pdf and saved to the folder reports/.

An option to change this has not been included.

– There is a runtime option to view the document using the system’s

default PDF viewer.

Evaluation Criteria

The main criteria used to compare both types of audits are as follows: The

accuracy of each audit. The IP ranges, services and operating systems running

57



on both networks are known beforehand. Given the the same input each tool

used will provide the same output. Because of this, the ease of managing all the

information found in previous steps is the most important part of this criteria.

Ease of Use, this is a subjective criteria but will be based on how long it takes to

get setup and manage the audit details. The quality and usefulness of the gen-

erated reports. A comparison of the detail and quality of the reports generated.

Extensibility, an evaluation on the difficulty of extending the audits to include

more details and coverage. All tests will be run with the default settings.

58



Conclusion

This section details the results of the manual and automated audit.

Results

The reports for both scans done with NetProbe are included in the appendix.

The reports for the manual tests are included separately in a folder. The reason

for this is that each step produces a separate document, and may be larger than

the generated reports from NetProbe.

Figure 5: Initializing Audit

The first target for Net-

probe is mccombsonline.net

As previously mentioned this

target has one physical node

to test. As such it is

very straight forward. The

enumeration step found 4

URL’s, with only one valid

URL (Figure 6). The

other three belong to name-

servers and the gateway from

the host provider RailsPlay-

ground. These three URL’s

were discarded. Discovery was run with the default port, version scans, and OS

detection. The vulnerability scan was performed on all open ports and Nikto

tested ports 80 and 443. There are two more HTTP ports, 7777 and 7778, but as

mentioned this is not accounted for in the initial implementation. In this case,

doing so is redundant as these two extra ports point to the same webserver that

is used for 80 and 443.

The manual scans against mccombsonline.net were identical except for one

area: vulnerability detection. Since the vulnerability scans for OSVBD in Net-

59



Figure 6: Removing Invalid URL’s

probe are static given a vendor and product, it will always produce the same

results. However, when querying OSVDB manually via a web browser, it is

trivial to expand and narrow searches. This discrepancy will be discussed in

further detail in the future work section.

Against a single target there is little advantage to Netprobe other then not

having to manually run programs at the command line. This is of little concern

since most security audits are run against networks with multiple targets and

sub-networks. The main disadvantage of less granular control with regard to

vulnerability scans is critical. Since this step does not confirm the existence of

a security problem it is less critical than other steps that have more granular

control built in, such as port scanning.

The last test is against the networks of Maplewood Software. The network

IP ranges are known. The structure of the networks have changed since working

there. This makes this test closer to a real world audit, since not all variables

are known before hand. The target that the audit is given is simply maplewood-

60



software.com. The IP ranges are 206.63.184.10/29 (206.63.184.8-206.63.184.15),

206.63.184.67/28 (206.63.184.64 -206.63.184.79, and 71.39.195.145/29 (71.39.195.144-

71.39.195.151). The first address in each range is the gateway address that be-

longs to the ISP, and is not scanned. The last IP is the broadcast address so it

not scanned. The existence of an IP address in the network does not imply that

there is a machine connected to it. In this case most of the addresses are not.

The automated test found 4 IP addresses with a machine connected to it.

The scan did miss one: 206.63.184.11. In this case, coverage remained at 100%

because this IP address is bound to the same NIC as 206.63.184.10 and each

reports the same services. Several invalid URL’s were removed from the test

that were the gateway addresses to the network. The scan was run with the

default settings. It took about 15 minutes to complete.

The manual test against Maplewood Software was much more difficult than

the first manual test. An Nmap list scan was performed to resolve maplewood-

software.com. This gave the address 206.63.184.67. The low IP address of this

address range was determined by decrementing the IP address by one and run-

ning a reverse DNS scan until an invalid address was found. The process was

repeated for finding the upper bound. This process is time-consuming and not

necessarily accurate. The other ranges were found by performing a DNS look-up

for mail servers which were reported at 206.63.184.10 and 71.39.195.148. The

latter address no longer has a mail server attached, but the DNS records have

not been updated to reflect this. After the ranges for each network was set, an

Nmap scan for each node following the defaults for NetProbe were followed and

saved to a XML file if any open or closed ports were discovered. A service scan

was performed at the same time. Nodes that have at least one open and one

closed port had a OS scan performed for each open node. Again results were

saved for all nodes reporting services and operating systems found.

A manual search of osvdb.org was performed for each known service running.

This is more accurate when done manually as previously mentioned, however

results either have do be written down manually or the HTML pages saved. A

61



Nikto scan was performed with default settings. As expected the results were

identical, and the only difference is that automated scan was able to process

the results faster. A report was not written, but the report would either be

written up as a summary or all the generated files would serve as the report.

This is time-consuming and can be inaccurate because of the need to manually

parse through potentially hundreds or more files that may not be in easy to read

format (XML, CSV).

A critical problem with the automated scan is that given the target, maple-

woodsoftware.com, several potential IP addresses were missed. In this case, it

is not an issue, because those IP addresses have no machine associated with it.

However, this is a problem because that will not be the case everywhere. The

problem is that the default address doesn’t handle finding CIDR’s very well as

well as nodes that do not have a URL associated with it. This will be addressed

in future work.

The major downside of the manual scan is all the data that needs to be

manually processed. It is easy to omit nodes or open ports to scans and reports.

It is also much more time consuming as multiple scans for each target need to

be manually configured and run.

While the automated audit is currently flawed, it has promise. Issues such

as adding more user control, handling network enumeration and vulnerability

scans more efficiently and accurately needs to be addressed as high priority

issues before a simple default audit can be considered useful in production.

Software Design Results

The software design techniques all have value. However, the ones that cause

the actual audit plugin to require little coding are the “winners”, provided they

can be adapted to any situation and remain flexible. This will be discussed in

further detail in future work. These techniques were shown in the vulnerability

and reporting sections of the scans. When development continues, a mix of

the two will be used for the entire project, other than the user interface. Each

62



large area of functionality, such as enumeration, will be broken down into small

modules that perform a single task. Each module will have certain prerequisites

that need to be complete before running the module. For example, before a

nmap service scan can be run, the module that determines if a port is open

needs to be run, and that module needs to know what IP addresses to scan,

which requires other modules.

What this will lead to is a system that is very similar to off the shelf com-

ponent development, except that the components do not have to be so generic.

They can be written for this system, and thus have knowledge of the models

and views. It will also make it possible to have an audit generator that can

write the audit script after the user selects the audit functionality he wants to

use. This of course, leads to not needing to know any programming to construct

custom audit scripts.

The use of ActiveRecord for handling the models will stay intact. What

needs to change is that each module should know about only its relevant mod-

els and be able to produce output for the reporting module to execute. An

example is the OSVDB vulnerability module(s) will know how to create its own

data stream, but it must also be able to tell the reporting module that each

stream belongs to a certain node. The responsibility of the actual formatting

of the document still belongs to the reporting module(s). How this will be

accomplished is still unclear and will need much more up-front design.

The interface will remain a graphical user interface, but other GUI libraries

should be considered. Swing is very verbose and fairly buggy. The MVC archi-

tecture will remain. However, the bindings between them should be generalized

more to keep each concern separated. This can be done by creating a DSL that

mimics Ruby on Rails. That is, common functionality, such as connecting the

controller with the view, should be distilled into libraries that handle a lot of

the work. With this method, there will not be strings created that get written

to the user interface in the controller sections of the program. The controller

section is considered to be the audit script itself and user interface listeners.

63



Rewriting the user interface to behave more like a web browser, in terms of

displaying interface elements will be needed to be done to simplify the process

of creating the DSL.

Future Work

There is nearly an infinite number of features that could be added to the project.

The first thing to be done before the project is ready for expansion and as

a possible project for students to work on is refactoring the architecture as

discussed in the software design results section.

Once the refactoring is complete, the project can be extended in multiple

ways by concurrent development projects. The remaining part of this section

will briefly discuss possible additions and bug fixes for current issues. Each

extension should be developed with the project goal in mind: to produce a

program that leverages existing tools and libraries that automates and simplifies

the security audit process. Given that, there are several reasons to create new

tools and libraries or extend them before bringing them into the project. The

first is that a tool may be lacking functionality. An example is a packet sniffer

library that does not directly support an application or network layer protocol.

Existing tools may be flawed, and in these cases it may make sense to create a

new tool or fix the existing one. There may be libraries or programs that could

work together so creating middleware that links these programs or libraries can

be useful. An example of this is combining an existing client HTTP library to

a fuzzing library and an ARP poisoning program to create a customized web

proxy to not only conduct fuzz testing but to create actual exploits such as man

in the middle.

The initial implementation of NetProbe did not leverage one of the advan-

tages of using the Java Virtual Machine. This advantage is the massive net-

working libraries that exist for Java. The official API only has network libraries

for common tasks such as basic client/server sockets, HTTP client socket and

so forth. There is not support for specific low level protocols and application

64



protocols such as FTP or mail clients. Even the HTTP client libraries are

fairly limited. Third party libraries are another matter. These often extend

the basic services that the official API provides and these should be leveraged.

An example are the Apache client and server libraries. They have support for

full HTTP support including managing cookies and secure connections. The

Java API has these, but are not integrated like the Apache modules. They also

implement other application layer protocols for client and server such as FTP,

POP, and even complex protocols such as ActiveDirectory. These libraries were

not written for security usage but can be leveraged to assist in testing.

The current implementation needs work. An issue with the vulnerability

testing is that all queries are hard coded and can be brittle. During testing

the hard coded query for the Apache web server started to produce HTTP 500

errors and needed to be changed in code. These sorts of problems can be solved

in 2 ways. The first is dynamic and user defined query generation when an

error is returned from the server or no results found. The second is to allow the

option of downloading the entire OSVDB database. The latter solution does

have the advantage of more powerful search options without running the risk of

surpassing the set daily query limit. The trade off is risk of not being up to date

and requiring large downloads one or more times a week. Both options should

be made available.

Enumeration needs to be reworked as discussed. This is a high priority

issue and should be completed before the project is considered robust enough

for extending it and for production. The enumeration modules need be able to

accurately ascertain all of the IP address ranges, especially in regards to nodes

that do not have a URL assigned to its IP address. This is critical, not only

for the sake of complete test coverage, but for legal reasons. Auditors can only

legally test addresses belonging to the entities they contract with. Testing nodes

not belonging to the company or organization they contract with can bring civil

or criminal penalties.

Recently, the GUI library QT had its licensing expanded. It now offers li-

65



censing under the lesser general public license (LGPL). What this means is that

the choice between releasing under GPL or having to pay a significant amount

to get licensing freedom no longer exists. Under the LGPL, NetProbe can

be released under just about any license including proprietary and academic li-

censes. The library is also much more powerful and streamlined when compared

to Swing. There are both Ruby and Java bindings to this library, although with

JRuby only the Java bindings can currently be used. Many advances in this

area have been implemented recently, but using C code via Ruby libraries is

still not reliable enough.

Licensing issues needs to be addressed. Many of the programs that NetProbe

utilizes are licensed under the General Public License(GPL). This is a legally

binding document, and the precise legal implications are beyond the scope of

this paper. However, the examples laid out in the GPL FAQ show that if you

make GPL licensed software part of your program, the entire program must be

licensed as GPL. This may be problematic if proprietary programs or libraries

are also used. However, NetProbe doesn’t depend on these programs, they

merely run them and read the output, much like an operating system. The

author of the GPL, Richard Stallman has clarified that programs that stay

“arms length” from GPL software do not need to be GPL’ed.[4] To date, the

libraries and programs that were used that are not GPL, but do use licenses that

are compatible, such as the Apache license and the LGPL. When the project

nears the point where it is ready to be released these issues need to be revisited

with legal counsel.

66



Acknowledgments

I would like to thank Carol Taylor and Steve Simmons for their invaluable advice

and support. I would also like to thank John Janzen of Maplewood Software

for allowing me to use and abuse his network in support of testing my project.

67



Appendix

Installation

To install and use NetProbe, extract netprobe.zip into any folder. Before the

program can be run successfully

JRuby must be installed and the bin/ folder placed in the system path.

Versions 1.4.x, 1.5.0 through 1.5.2 have been successfully tested. The download

and installation instructions can be found here: http://jruby.org/getting-started

The following dependencies need to be installed and added to the system

path so NetProbe can run them as shell applications. Many of the network sys-

tem programs are available in Windows via Cygwin. Linux is the recommended

OS.

• Host

• Dig

• Whois

• Nmap

• Nikto

Next, Ruby libraries that are used need to be installed via Ruby Gems.

These are installed by: jruby -S gem install ¡gem name¿ -v¡version¿. The version

is optional in most cases, but not in the cases of the Rails libraries. The gems

that do not have an optional version are denoted by a specific version number.

• activerecord 2.3.5

• nmap-parser

• jruby-openssl

• activerecord-jdbcmysql-adapter

• jdbc-mysql

68



• rake 0.8.7

• railroad (optional-used to create diagrams)

• rails 2.3.5 (only if railroad is used-includes activerecord and rake)

• whois

• net-dns

• xml-simple

• prawn

MySQL needs to be installed next. Version 5.x is sufficient. Installation

can be accomplished via the Linux distribution package manager or through:

http://www.mysql.com/. Create a schema, currently called “thesis”. You can

optionally create a specific user account and password for the scheme or use the

default root user with no password. If a different database or non-default user

is used the file config/database.yml must be edited.

1 development :
2 adapter : jdbcmysql
3 database : t h e s i s
4 username : root
5 password :
6 # socket : / var / l i b /mysql/mysqld . sock

Listing 17: Vulnerability Scan DSL

The socket may need to be uncommented. Another database file config/-

database 1, needs to have the same information except the first line is com-

mented out. This is to get around a bug in JRuby. The second file is used to

run rake tasks.

Next the database needs to be populated with the required tables and de-

faults loaded. To do this navigate to the projects root directory on the command

line and type: jruby -S rake. This calls the Ruby on Rails migration tool which

automatically sets up the database according the ruby files defined in /db/mi-

grate

69



The program is started on the command line via jruby start.rb. The appli-

cation needs root access.

Note: There is another way to run this program. All ruby files can be

compiled into Java class files and run via a Java Virtual Machine or JRuby. To

do this with the JVM compile the ruby files via the jrubyc command. Then

run the program as java -classpath “path to jruby.jar” start. This method has

not been thoroughly tested with NetProbe as of this writing. The class files can

also be packaged as JAR files.

70



Network Topology and Security Evaluation
Generated by NetProbe

Sep 28, 2010

This report details the results of a default scan against the network mccombsonline.net.
This network has 1 node that was scanned.

A summary of the network scanned:
- 74.63.10.95 Open Ports: 13

The following tables break down the results of the scan.

Node Address: 74.63.10.95

Port 21

Status open

Service Information for Port 21

Name ftp

Version

Product PureFTPd

Operating
System

Owner

Other

Port 22

Status open

Service Information for Port 22



Name ssh

Version 3.9p1

Product OpenSSH

Operating
System

Owner

Other protocol 1.99

Port 25

Status open

Service Information for Port 25

Name smtp

Version 1.04

Product netqmail smtpd

Operating
System

Unix

Owner

Other

Port 53

Status open

Service Information for Port 53

Name domain

Version



Product

Operating
System

Owner

Other

Port 80

Status open

Service Information for Port 80

Name http

Version 1.4.13

Product lighttpd

Operating
System

Owner

Other

Port 110

Status open

Service Information for Port 110

Name pop3

Version

Product Courier pop3d

Operating
System



Owner

Other

Port 143

Status open

Service Information for Port 143

Name imap

Version

Product Courier Imapd

Operating
System

Owner

Other released 2004

Port 443

Status open

Service Information for Port 443

Name http

Version 1.4.13

Product lighttpd

Operating
System

Owner

Other



Port 993

Status open

Service Information for Port 993

Name imap

Version

Product Courier Imapd

Operating
System

Owner

Other released 2004

Port 995

Status open

Service Information for Port 995

Name pop3

Version

Product Courier pop3d

Operating
System

Owner

Other

Port 3306

Status open



Service Information for Port 3306

Name mysql

Version

Product MySQL

Operating
System

Owner

Other Host blocked because of too many connections

Port 7777

Status open

Service Information for Port 7777

Name http

Version 1.4.13

Product lighttpd

Operating
System

Owner

Other

Port 7778

Status open

Service Information for Port 7778

Name http



Version 1.4.13

Product lighttpd

Operating
System

Owner

Other

Port 161

Status closed

Port 162

Status closed

Port 2049

Status closed

Nikto Results

Server Data lighttpd/1.4.13

SSL Ciphers None

SSL Issuers None

SSL Data None

3 potential issues found.

Issue 1

OSVDB ID 0

OSVDB Link http://osvdb.org/0



Description ---
- lighttpd/1.4.13 appears to be outdated (current is at least 1.4.23)

Issue Link ---
- http://74.63.10.95:80/

Issue 2

OSVDB ID 0

OSVDB Link http://osvdb.org/0

Description ---
- "ETag header found on server, fields: 0x 0x840009017 "

Issue Link ---
- http://74.63.10.95:80/

Issue 3

OSVDB ID 0

OSVDB Link http://osvdb.org/0

Description ---
- "Allowed HTTP Methods: OPTIONS, GET, HEAD, POST "

Issue Link ---
- http://74.63.10.95:80/



Network Topology and Security Evaluation
Generated by NetProbe

Sep 28, 2010

This report details the results of a default scan against the network maplewoodsoftware.com.
This network has 4 nodes that were scanned.

A summary of the network scanned:
- 206.63.184.10 Open Ports: 6
- 71.39.195.148 Open Ports: 0
- 71.39.195.145 Open Ports: 0
- 206.63.184.67 Open Ports: 3

The following tables break down the results of the scan.

Node Address: 206.63.184.10

Port 22

Status open

Service Information for Port 22

Name tcpwrapped

Version

Product

Operating
System

Owner

Other

Port 25

Status open



Service Information for Port 25

Name smtp

Version

Product Postfix smtpd

Operating
System

Owner

Other

Port 53

Status open

Service Information for Port 53

Name domain

Version 9.4.2-P2

Product ISC BIND

Operating
System

Owner

Other

Port 80

Status open

Service Information for Port 80

Name http



Version 2.2.8

Product Apache httpd

Operating
System

Owner

Other (Ubuntu)

Port 110

Status open

Service Information for Port 110

Name pop3

Version

Product Courier pop3d

Operating
System

Owner

Other

Port 143

Status open

Service Information for Port 143

Name imap

Version

Product Courier Imapd



Operating
System

Owner

Other released 2005

Port 2049

Status closed

Nikto Results

Server Data Apache/2.2.8 (Ubuntu)

SSL Ciphers None

SSL Issuers None

SSL Data None

6 potential issues found.

Issue 1

OSVDB ID 0

OSVDB Link http://osvdb.org/0

Description ---
- "Number of sections in the version string differ from those in the
database, the server reports: apache/2.2.8 while the database has:
2.2.14. This may cause false positives."

Issue Link ---
- http://bones.maplewoodsoftware.com:80/

Issue 2

OSVDB ID 0

OSVDB Link http://osvdb.org/0



Description ---
- "ETag header found on server, inode: 466007, size: 91, mtime:
0x4616b2439b800"

Issue Link ---
- http://bones.maplewoodsoftware.com:80/

Issue 3

OSVDB ID 0

OSVDB Link http://osvdb.org/0

Description ---
- "Allowed HTTP Methods: GET, HEAD, POST, OPTIONS, TRACE "

Issue Link ---
- http://bones.maplewoodsoftware.com:80/

Issue 4

OSVDB ID 877

OSVDB Link http://osvdb.org/877

Description ---
- HTTP TRACE method is active, suggesting the host is vulnerable to
XST

Issue Link ---
- http://bones.maplewoodsoftware.com:80/

Issue 5

OSVDB ID 3268

OSVDB Link http://osvdb.org/3268

Description ---
- "/icons/: Directory indexing is enabled: /icons"

Issue Link ---
- http://bones.maplewoodsoftware.com:80/icons/



Issue 6

OSVDB ID 3233

OSVDB Link http://osvdb.org/3233

Description ---
- "/icons/README: Apache default file found."

Issue Link ---
- http://bones.maplewoodsoftware.com:80/icons/README

The following tables break down the results of the scan.

Node Address: 71.39.195.148

The following tables break down the results of the scan.

Node Address: 71.39.195.145

The following tables break down the results of the scan.

Node Address: 206.63.184.67

Port 22

Status open



Service Information for Port 22

Name tcpwrapped

Version

Product

Operating
System

Owner

Other

Port 80

Status open

Service Information for Port 80

Name http

Version 2.2.12

Product Apache httpd

Operating
System

Owner

Other (Ubuntu)

Port 443

Status open

Service Information for Port 443

Name http



Version 2.2.12

Product Apache httpd

Operating
System

Owner

Other (Ubuntu)

Port 1723

Status closed

Port 5060

Status closed

Port 2049

Status open|filtered

Nikto Results

Server Data Apache/2.2.12 (Ubuntu)

SSL Ciphers None

SSL Issuers None

SSL Data None

8 potential issues found.

Issue 1

OSVDB ID 0

OSVDB Link http://osvdb.org/0



Description ---
- Apache/2.2.12 appears to be outdated (current is at least
Apache/2.2.14). Apache 1.3.41 and 2.0.63 are also current.

Issue Link ---
- http://206.63.184.67:80/

Issue 2

OSVDB ID 0

OSVDB Link http://osvdb.org/0

Description ---
- "Retrieved X-Powered-By header: PHP/5.2.10-2ubuntu6.4"

Issue Link ---
- http://206.63.184.67:80/

Issue 3

OSVDB ID 12184

OSVDB Link http://osvdb.org/12184

Description ---
- "/index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000: PHP
reveals potentially sensitive information via certain HTTP requests which
contain specific QUERY strings."

Issue Link ---
-
http://206.63.184.67:80/index.php?=PHPB8B5F2A0-3C92-11d3-A3A9-4
C7B08C10000

Issue 4

OSVDB ID 3092

OSVDB Link http://osvdb.org/3092



Description ---
- "/phpmyadmin/: phpMyAdmin is for managing MySQL databases, and
should be protected or limited to authorized hosts."

Issue Link ---
- http://206.63.184.67:80/phpmyadmin/

Issue 5

OSVDB ID 3268

OSVDB Link http://osvdb.org/3268

Description ---
- "/icons/: Directory indexing is enabled: /icons"

Issue Link ---
- http://206.63.184.67:80/icons/

Issue 6

OSVDB ID 3233

OSVDB Link http://osvdb.org/3233

Description ---
- "/icons/README: Apache default file found."

Issue Link ---
- http://206.63.184.67:80/icons/README

Issue 7

OSVDB ID 3092

OSVDB Link http://osvdb.org/3092

Description ---
- "/mw/: This might be interesting... potential country code (Malawi)"

Issue Link ---
- http://206.63.184.67:80/mw/



Issue 8

OSVDB ID 3092

OSVDB Link http://osvdb.org/3092

Description ---
- "/sc/: This might be interesting... potential country code (Seychelles)"

Issue Link ---
- http://206.63.184.67:80/sc/



Glossary

Anonymous Functions A function that is defined without being bound to
an identifier. It has no name, and may or may not have a reference or
pointer.

Backdoor A malicious program that provides the attacker remote access. The
program can be any kind of malware.

Buffer Overflow An attack technique that attempts to overrun the allocated
memory of a buffer on the stack or queue

Chained Exploit An exploit that requires other programs or nodes to be first
exploited in order to succeed.

Classless Inter-Domain Routing (CIDR) - A method of allocating and
routing IP addresses that uses y1.y2.y3.y4/x notation, where x is an inte-
ger between 0 and 32 to denote the number of leading non-zero bits.

Closure A first class function that has free variables that are declared outside
the function but bound to it, as well as the lexical scope of the declaration.

Domain Specific Language A language created to solve a specific problem
or set of problems.

Dynamic Typing A type system that enforces type only at runtime. Also
called Duck Typing.

Firewall A program that filters packets based on predefined rules that deter-
mine whether or not to allow or drop a packet.

Fuzzing A testing technique that uses a mix of crafted and random data to see
how the target reacts.

Google Hacking A technique that uses advanced search criteria to find data
that should not be public.

Green Thread Threads that are scheduled by a virtual machine or interpreter.
They can not not take advantage of the underlying operating system and
hardware thread support. Green threads can not be run across multiple
processor cores. A green thread automatically blocks all other threads in
the process.

Intrusion Detection A type of program that tries to determine intent of a
single packet, or a sequence of them. Its goal is to discover hacking and
reconnaissance attempts.

Man in the Middle Attack A method of eavesdropping on, and manipulat-
ing communication by rerouting the client and server packets through the
attackers machine. This is typically done by poisoning the local network
address tables(ARP).

Native Thread Threads that are scheduled by the operating system. It can
take advantage of the underlying hardware support for threads.

90



Nessus A program that tries to discover vulnerabilities of various types of
services.

Nikto A program similar to Nessus but is focused on HTTP and HTTPS ser-
vices.

Nmap A program that is used to detect machines and ports connected to
networks.

Open Class A class that can have methods added to it during runtime without
subclassing it.

OpenVas A fork of Nessus

Packet Injection A technique that circumvents the operating systems net-
work stack allowing packet header data to be crafted by a tester or at-
tacker.

Packet Sniffer A program that collects raw packets to be saved or displayed.

Penetration Testing A collection of testing techniques used to determine the
security of a target.

Proxy A program that mimics the functionality of a server the proxy is hiding.
Is used to balance loads among a server cluster or as a security measure
that act like a firewall at the application layer. A proxy can also be used
by an attacker or tester to change data between the client and server.

Raw Packet Custom crafted network packets used in packet injection and the
packets created by the operating systems network stack.

Script Kiddie A derogatory term used for an unskilled cracker that exclusively
relies on “off the shelf” software to carry out the attacks.

Security Audit Another name for a penetration test.

Social Engineering An attack technique that relies on gaining information or
access from people who use the target.

SQL Injection An attack on network systems that relies on databases. An
attacker sends SQL commands via HTTP forms or other methods of taking
input to see if the system will return the raw data from the database.
Commonly used to steal login information. This technique can also be
used to attempt to write to the database and corrupt or change the data
in some way that is useful to the attacker.

Structured Query Language (SQL)

Swing The standard Java graphical interface library.

Thread The smallest unit of processing that can be run by an operating system.
It is generally used to run 2 or more parts of a single program concurrently.

91



Bibliography

[1] Andres Andreu. Professional Pen Testing for Web Applications. Wrox,
2006.

[2] CERT. Cert statistics. http://www.cert.org/stats, 2008.

[3] Joris Evers. T.j. maxx hack exposes consumer data. http:

//news.cnet.com/T.J.-Maxx-hack-exposes-consumer-data/

2100-1029_3-6151017.html, 2007.

[4] Free Software Foundation. Frequently asked questions about the gnu li-
censes. http://www.gnu.org/licenses/gpl-faq.html, 2010.

[5] Larry Greenemeier. Hack attack means headaches for tj maxx.
http://www.informationweek.com/news/security/cybercrime/

showArticle.jhtml?articleID=197003041, 2007.

[6] Shane Harris. China’s cyber-militia. http://www.nationaljournal.com/
njmagazine/cs_20080531_6948.php, 2008.

[7] US Health and Human Services. Hipaa administrative simplification statute
and rules. http://www.hhs.gov/ocr/privacy/hipaa/administrative/

index.html.

[8] Andrew Jaquith. Security Metrics: Replacing Fear, Uncertainty, and
Doubt. Addison Wesley, 2007.

[9] Lavasoft. Spyware statistics. http://www.lavasoft.com/support/

spywareeducationcenter/spyware_statistics.php.

[10] Elinor Mills. Three men indicted in largest u.s. data breach. http://news.
cnet.com/8301-27080_3-10311336-245.html?tag=mncol, 2009.

[11] Intrinium Networks. Glba regulations for financial institutions.
https://www.intriniumsecurity.com/resources/white-papers/

GLBA%20Regulations%20for%20Financial%20Intitutions.pdf/view.

92

http://www.cert.org/stats
http://news.cnet.com/T.J.-Maxx-hack-exposes-consumer-data/2100-1029_3-6151017.html
http://news.cnet.com/T.J.-Maxx-hack-exposes-consumer-data/2100-1029_3-6151017.html
http://news.cnet.com/T.J.-Maxx-hack-exposes-consumer-data/2100-1029_3-6151017.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.informationweek.com/news/security/cybercrime/showArticle.jhtml?articleID=197003041
http://www.informationweek.com/news/security/cybercrime/showArticle.jhtml?articleID=197003041
http://www.nationaljournal.com/njmagazine/cs_20080531_6948.php
http://www.nationaljournal.com/njmagazine/cs_20080531_6948.php
http://www.hhs.gov/ocr/privacy/hipaa/administrative/index.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/index.html
http://www.lavasoft.com/support/spywareeducationcenter/spyware_statistics.php
http://www.lavasoft.com/support/spywareeducationcenter/spyware_statistics.php
http://news.cnet.com/8301-27080_3-10311336-245.html?tag=mncol
http://news.cnet.com/8301-27080_3-10311336-245.html?tag=mncol
 https://www.intriniumsecurity.com/resources/white-papers/GLBA%20Regulations%20for%20Financial%20Intitutions.pdf/view
 https://www.intriniumsecurity.com/resources/white-papers/GLBA%20Regulations%20for%20Financial%20Intitutions.pdf/view

	Abstract
	Introduction
	Security Overview
	Motivation
	Existing Solutions
	Statement of Purpose
	Project Goals

	Design Considerations
	Languages and Frameworks
	Interface
	Initial Prototype Choices
	Software Design
	Tool and Library Selection

	Prototype Description
	Libraries
	Plugins
	Utilities
	Database Structure

	Prototype Evaluation
	Prototype Audit Plugin
	Targets
	Manual Audit
	Automated Audit
	Evaluation Criteria

	Conclusion
	Results
	Software Design Results
	Future Work

	Acknowledgments
	Appendix
	Installation
	NetProbe Report-mccombsonline.net
	NetProbe Report-maplewoodsoftware.com

	Glossary
	Bibliography

