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Outline

Introduction to design patterns
Creational patterns (constructing objects)
Structural patterns (controlling heap layout)
Behavioral patterns (affecting object semantics)
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What is a design pattern?

• a standard solution to a common programming problem
• a technique for making code more flexible by making it 

meet certain criteria
• a design or implementation structure that achieves a 

particular purpose
• a high-level programming idiom
• shorthand for describing certain aspects of program 

organization
• connections among program components
• the shape of a heap snapshot or object model
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Example 1:  Encapsulation (data hiding)

Problem:  Exposed fields can be directly manipulated
Violations of the representation invariant
Dependences prevent changing the implementation

Solution:  Hide some components
Permit only stylized access to the object

Disadvantages:
Interface may not (efficiently) provide all desired operations
Indirection may reduce performance
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Example 2:  Subclassing (inheritance)

Problem:  Repetition in implementations
Similar abstractions have similar members (fields, methods)

Solution:  Inherit default members from a superclass
Select an implementation via run-time dispatching

Disadvantages:
Code for a class is spread out, potentially

reducing understandability
Run-time dispatching introduces overhead

This repetition is tedious, error-
prone, and a maintenance headache.

This repetition is tedious, error-
prone, and a maintenance headache.
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Example 3:  Iteration

Problem:  To access all members of a collection, must 
perform a specialized traversal for each data structure  
Introduces undesirable dependences
Does not generalize to other collections

Solution:
The implementation performs traversals, does bookkeeping
Results are communicated to clients via a standard interface

Disadvantages:
Iteration order is fixed by the implementation and not under 

the control of the client

The implementation has knowledge 
about the representation.

The implementation has knowledge 
about the representation.
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Example 4:  Exceptions

Problem:
Errors in one part of the code should be handled elsewhere. 
Code should not be cluttered with error-handling code.
Return values should not be preempted by error codes.

Solution:  Language structures for throwing and catching 
exceptions

Disadvantages:
Code may still be cluttered.
It may be hard to know where an exception will be 

handled.
Use of exceptions for normal control flow may be 

confusing and inefficient.
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When (not) to use design patterns

Rule 1:  delay
Design patterns can increase or decrease understandability

Add indirection, increase code size
Improve modularity, separate concerns, ease description

If your design or implementation has a problem, consider 
design patterns that address that problem

Canonical reference:  the "Gang of Four" book
Design Patterns: Elements of Reusable Object-Oriented 

Software, by Erich Gamma, Richard Helm, Ralph 
Johnson, and John Vlissides, Addison-Wesley, 1995.

Another good reference for Java
Effective Java: Programming Language Guide, by Joshua 

Bloch, Addison-Wesley, 2001. 

Get something basic working first, then 
improve it once you understand it.

Get something basic working first, then 
improve it once you understand it.
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Why should you care?

You could come up with these solutions on your own
You shouldn't have to!
A design pattern is a known solution to a known problem
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Creational patterns

Factories
Factory method
Factory object
Prototype

Sharing
Singleton
Interning
Flyweight

Michael Ernst/John Guttag Slide 11Spring 2003

Factories

Problem:  client desires control over object creation
Factory method:  put code in methods in client
Factory object:  put code in a separate object
Prototype:  put code in clone methods
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Example:  bicycle race

class Race {

Race createRace() {
Frame frame1 = new Frame();
Wheel front1 = new Wheel();
Wheel rear1 = new Wheel();
Bicycle bike1 = new Bicycle(frame1, front1, rear1);

Frame frame2 = new Frame();
Wheel frontWheel2 = new Wheel();
Wheel rearWheel2 = new Wheel();
Bicycle bike2 = new Bicycle(frame2, front2, rear2);

...
}

}

CreateRace is a factory method.  It 
may seem strange that it appears 
in Race; we will see how to move it 
outside Race shortly.

CreateRace is a factory method.  It 
may seem strange that it appears 
in Race; we will see how to move it 
outside Race shortly.
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Example:  Tour de France

class TourDeFrance extends Race {

Race createRace() {
Frame frame1 = new RacingFrame();
Wheel front1 = new Wheel700c();
Wheel rear1 = new Wheel700c();
Bicycle bike1 = new Bicycle(frame1, front1, rear1);

Frame frame2 = new RacingFrame();
Wheel frontWheel2 = new Wheel700c();
Wheel rearWheel2 = new Wheel700c();
Bicycle bike2 = new Bicycle(frame2, front2, rear2);

...
}

}
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Example:  Cyclocross

class Cyclocross extends Race {

Race createRace() {
Frame frame1 = new MountainFrame();
Wheel front1 = new Wheel26in();
Wheel rear1 = new Wheel26in();
Bicycle bike1 = new Bicycle(frame1, front1, rear1);

Frame frame2 = new MountainFrame();
Wheel frontWheel2 = new Wheel26in();
Wheel rearWheel2 = new Wheel26in();
Bicycle bike2 = new Bicycle(frame2, front2, rear2);

...
}

}
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Factory method

class Race {
Frame createFrame() { return new Frame(); }
Wheel createWheel() { return new Wheel(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new Bicycle(frame, front, rear); }
// Return a complete bicycle without needing any arguments
Bicycle completeBicycle() {

Frame frame = createFrame();
Wheel frontWheel = createWheel();
Wheel rearWheel = createWheel();
return createBicycle(frame, frontWheel, rearWheel);

}
Race createRace() {

Bicycle bike1 = completeBicycle();
Bicycle bike2 = completeBicycle();
...

}
}

Michael Ernst/John Guttag Slide 16Spring 2003

Code for specific races, using factory methods

class TourDeFrance extends Race {
Frame createFrame() { return new RacingFrame(); }
Wheel createWheel() { return new Wheel700c(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new RacingBicycle(frame, front, rear);
}

}

class Cyclocross extends Race {
Frame createFrame() { return new MountainFrame(); }
Wheel createWheel() { return new Wheel26inch(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new MountainBicycle(frame, front, rear);
}

}
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Factory objects encapsulate factory methods 

Same code as before, but in a separate object

class BicycleFactory {
Frame createFrame() { return new Frame(); }
Wheel createWheel() { return new Wheel(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new Bicycle(frame, front, rear);
}

// return a complete bicycle without needing any arguments
Bicycle completeBicycle() { 

Frame frame = createFrame();
Wheel frontWheel = createWheel();
Wheel rearWheel = createWheel();
return createBicycle(frame, frontWheel, rearWheel);

}
}
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Specializations of the factory object

class RacingBicycleFactory {
Frame createFrame() { return new RacingFrame(); }
Wheel createWheel() { return new Wheel700c(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new RacingBicycle(frame, front, rear);
}

}

class MountainBicycleFactory {
Frame createFrame() { return new MountainFrame(); }
Wheel createWheel() { return new Wheel26inch(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new MountainBicycle(frame, front, rear);
}

}
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Use of the factory object

class Race {
BicycleFactory bfactory;
// constructor
Race() { bfactory = new BicycleFactory(); }
Race createRace() {

Bicycle bike1 = bfactory.completeBicycle();
Bicycle bike2 = bfactory.completeBicycle();
...

}
}

class TourDeFrance extends Race {
// constructor
TourDeFrance() { bfactory = new RacingBicycleFactory(); }

}

class Cyclocross extends Race {
// constructor
Cyclocross() { bfactory = new MountainBicycleFactory(); }

}
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Separate control over bicycles and races

class Race {
BicycleFactory bfactory;
// constructor
Race(BicycleFactory bfactory) { this.bfactory = bfactory; }
Race createRace() {

Bicycle bike1 = bfactory.completeBicycle();
Bicycle bike2 = bfactory.completeBicycle();
...

}
}
// No special constructor for TourDeFrance or for Cyclocross

Now we can specify the race and the bicycle separately:

new TourDeFrance(new TricycleFactory())
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Prototype

Every object is itself a factory
Each class contains a clone method that creates a copy of 

the receiver object

class Bicyle {
Object clone() { ... }

}

Why is  Object the return type of  clone?

clone is declared in Object, and 
Java does not permit subclasses 
to change the return type of an 
overridden method.

clone is declared in Object, and 
Java does not permit subclasses 
to change the return type of an 
overridden method.
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Using prototypes

class Race {
Bicycle bproto;
// constructor
Race(Bicycle bproto) { this.bproto = bproto; }
Race createRace() {

Bicycle bike1 = (Bicycle) bproto.clone();
Bicycle bike2 = (Bicycle) bproto.clone();
...

}
}

Again, we can specify the race and the bicycle separately:

new TourDeFrance(new Tricycle())
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Sharing

Singleton:  only one object exists at runtime
Interning:  only one object with a particular (abstract) 

value exists at runtime
Flyweight:  separate intrinsic and extrinsic state, represent 

them separately, and intern the intrinsic state
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Singleton

Only one object of the given type exists

class Bank {
private static bank theBank;

// constructor
private Bank() { ... }

// factory method
public static getBank() {

if (theBank == null) {
theBank = new Bank();

}
return theBank;

}
...

}
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The second weakness of Java constructors

Java constructors always return a new object, never a pre-
existing object

Michael Ernst/John Guttag Slide 26Spring 2003

Interning

Reuse existing objects instead of creating new ones
Permitted only for immutable objects
Example:  StreetSegment

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Mass Ave"
(String)

"O2139"
(String)

Without interningWithout interning

With interningWith interning
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Interning mechanism

Maintain a collection of all objects
If an object already appears, return that instead

HashMap segnames = new HashMap();  // why not a Set?
String canonicalName(String n) {
if (segnames.containsKey(n)) {

return segnames.get(n);
} else {

segnames.put(n, n);
return n;

}
}

Java builds this in for strings:  String.intern()
Two approaches:

– create the object, but perhaps discard it and return another
– check against the arguments before creating the new object

Set supports 
contains but not get
Set supports 
contains but not get
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Flyweight

Separate the intrinsic (same across all objects) and 
extrinsic (different for different objects) state

Intern the intrinsic state
Good when most of the object is immutable
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Example:  bicycle spoke

class Wheel {
FullSpoke[] spokes;
...

} 
class FullSpoke {
int length;
int diameter;
bool tapered;
Metal material;
float weight;
float threading;
bool crimped;
int location;   // rim and hub holes this is installed in

}

Typically 32 or 36 spokes per wheel, but only 3 varieties per bicycle.
In a 10,000-bike race, hundreds of spoke varieties, millions of 

instances
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Alternatives to FullSpoke

class Spoke {
int length;
int diameter;
boolean tapered;
Metal material;
float weight;
float threading;
boolean crimped;

}

This doesn't work:  it's the same as FullSpoke
class InstalledSpokeFull extends Spoke {
int location;

}

This does work, but there is a better solution
class InstalledSpokeWrapper {
Spoke s;
int location;

}
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Original code to true (align) a wheel

class FullSpoke {
// Tension the spoke by turning the nipple the
// specified number of turns.
void tighten(int turns) {

... location ...
}

}

class Wheel {
FullSpoke[] spokes;
void align() {

while (wheel is misaligned) {
... spokes[i].tighten(numturns) ...

}
}

}
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Flyweight code to true (align) a wheel

class Spoke {
void tighten(int turns, int location) {

... location ...
}

}

class Wheel {
Spoke[] spokes;

void align() {
while (wheel is misaligned) {

... spokes[i].tighten(numturns, i) ...
}

}
}
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Flyweight discussion

What if FullSpoke contains a wheel field pointing at the 
Wheel containing it?

What if FullSpoke contains a boolean broken field?

Flyweight is manageable only if there are very few mutable 
(extrinsic) fields.

Flyweight complicates the code.
Use flyweight only when profiling has determined that 

space is a serious problem.

Wheel methods pass this to the 
methods that use the wheel field.
Wheel methods pass this to the 
methods that use the wheel field.

Add an array of booleans in Wheel, 
parallel to the array of Spokess.

Add an array of booleans in Wheel, 
parallel to the array of Spokess.


