
1

6.170
Spring 2003

6.170 Lecture 15
Design Patterns

Michael Ernst
John Guttag
MIT EECS

Michael Ernst/John Guttag Slide 2Spring 2003

Outline

Introduction to design patterns
Creational patterns (constructing objects)
Structural patterns (controlling heap layout)
Behavioral patterns (affecting object semantics)

Michael Ernst/John Guttag Slide 3Spring 2003

What is a design pattern?

• a standard solution to a common programming problem
• a technique for making code more flexible by making it

meet certain criteria
• a design or implementation structure that achieves a

particular purpose
• a high-level programming idiom
• shorthand for describing certain aspects of program

organization
• connections among program components
• the shape of a heap snapshot or object model

Michael Ernst/John Guttag Slide 4Spring 2003

Example 1: Encapsulation (data hiding)

Problem: Exposed fields can be directly manipulated
Violations of the representation invariant
Dependences prevent changing the implementation

Solution: Hide some components
Permit only stylized access to the object

Disadvantages:
Interface may not (efficiently) provide all desired operations
Indirection may reduce performance

Michael Ernst/John Guttag Slide 5Spring 2003

Example 2: Subclassing (inheritance)

Problem: Repetition in implementations
Similar abstractions have similar members (fields, methods)

Solution: Inherit default members from a superclass
Select an implementation via run-time dispatching

Disadvantages:
Code for a class is spread out, potentially

reducing understandability
Run-time dispatching introduces overhead

This repetition is tedious, error-
prone, and a maintenance headache.

This repetition is tedious, error-
prone, and a maintenance headache.

Michael Ernst/John Guttag Slide 6Spring 2003

Example 3: Iteration

Problem: To access all members of a collection, must
perform a specialized traversal for each data structure
Introduces undesirable dependences
Does not generalize to other collections

Solution:
The implementation performs traversals, does bookkeeping
Results are communicated to clients via a standard interface

Disadvantages:
Iteration order is fixed by the implementation and not under

the control of the client

The implementation has knowledge
about the representation.

The implementation has knowledge
about the representation.

2

6.170
Spring 2003

Michael Ernst/John Guttag Slide 7Spring 2003

Example 4: Exceptions

Problem:
Errors in one part of the code should be handled elsewhere.
Code should not be cluttered with error-handling code.
Return values should not be preempted by error codes.

Solution: Language structures for throwing and catching
exceptions

Disadvantages:
Code may still be cluttered.
It may be hard to know where an exception will be

handled.
Use of exceptions for normal control flow may be

confusing and inefficient.

Michael Ernst/John Guttag Slide 8Spring 2003

When (not) to use design patterns

Rule 1: delay
Design patterns can increase or decrease understandability

Add indirection, increase code size
Improve modularity, separate concerns, ease description

If your design or implementation has a problem, consider
design patterns that address that problem

Canonical reference: the "Gang of Four" book
Design Patterns: Elements of Reusable Object-Oriented

Software, by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, Addison-Wesley, 1995.

Another good reference for Java
Effective Java: Programming Language Guide, by Joshua

Bloch, Addison-Wesley, 2001.

Get something basic working first, then
improve it once you understand it.

Get something basic working first, then
improve it once you understand it.

Michael Ernst/John Guttag Slide 9Spring 2003

Why should you care?

You could come up with these solutions on your own
You shouldn't have to!
A design pattern is a known solution to a known problem

Michael Ernst/John Guttag Slide 10Spring 2003

Creational patterns

Factories
Factory method
Factory object
Prototype

Sharing
Singleton
Interning
Flyweight

Michael Ernst/John Guttag Slide 11Spring 2003

Factories

Problem: client desires control over object creation
Factory method: put code in methods in client
Factory object: put code in a separate object
Prototype: put code in clone methods

Michael Ernst/John Guttag Slide 12Spring 2003

Example: bicycle race

class Race {

Race createRace() {
Frame frame1 = new Frame();
Wheel front1 = new Wheel();
Wheel rear1 = new Wheel();
Bicycle bike1 = new Bicycle(frame1, front1, rear1);

Frame frame2 = new Frame();
Wheel frontWheel2 = new Wheel();
Wheel rearWheel2 = new Wheel();
Bicycle bike2 = new Bicycle(frame2, front2, rear2);

...
}

}

CreateRace is a factory method. It
may seem strange that it appears
in Race; we will see how to move it
outside Race shortly.

CreateRace is a factory method. It
may seem strange that it appears
in Race; we will see how to move it
outside Race shortly.

3

6.170
Spring 2003

Michael Ernst/John Guttag Slide 13Spring 2003

Example: Tour de France

class TourDeFrance extends Race {

Race createRace() {
Frame frame1 = new RacingFrame();
Wheel front1 = new Wheel700c();
Wheel rear1 = new Wheel700c();
Bicycle bike1 = new Bicycle(frame1, front1, rear1);

Frame frame2 = new RacingFrame();
Wheel frontWheel2 = new Wheel700c();
Wheel rearWheel2 = new Wheel700c();
Bicycle bike2 = new Bicycle(frame2, front2, rear2);

...
}

}

Michael Ernst/John Guttag Slide 14Spring 2003

Example: Cyclocross

class Cyclocross extends Race {

Race createRace() {
Frame frame1 = new MountainFrame();
Wheel front1 = new Wheel26in();
Wheel rear1 = new Wheel26in();
Bicycle bike1 = new Bicycle(frame1, front1, rear1);

Frame frame2 = new MountainFrame();
Wheel frontWheel2 = new Wheel26in();
Wheel rearWheel2 = new Wheel26in();
Bicycle bike2 = new Bicycle(frame2, front2, rear2);

...
}

}

Michael Ernst/John Guttag Slide 15Spring 2003

Factory method

class Race {
Frame createFrame() { return new Frame(); }
Wheel createWheel() { return new Wheel(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new Bicycle(frame, front, rear); }
// Return a complete bicycle without needing any arguments
Bicycle completeBicycle() {

Frame frame = createFrame();
Wheel frontWheel = createWheel();
Wheel rearWheel = createWheel();
return createBicycle(frame, frontWheel, rearWheel);

}
Race createRace() {

Bicycle bike1 = completeBicycle();
Bicycle bike2 = completeBicycle();
...

}
}

Michael Ernst/John Guttag Slide 16Spring 2003

Code for specific races, using factory methods

class TourDeFrance extends Race {
Frame createFrame() { return new RacingFrame(); }
Wheel createWheel() { return new Wheel700c(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new RacingBicycle(frame, front, rear);
}

}

class Cyclocross extends Race {
Frame createFrame() { return new MountainFrame(); }
Wheel createWheel() { return new Wheel26inch(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new MountainBicycle(frame, front, rear);
}

}

Michael Ernst/John Guttag Slide 17Spring 2003

Factory objects encapsulate factory methods

Same code as before, but in a separate object

class BicycleFactory {
Frame createFrame() { return new Frame(); }
Wheel createWheel() { return new Wheel(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new Bicycle(frame, front, rear);
}

// return a complete bicycle without needing any arguments
Bicycle completeBicycle() {

Frame frame = createFrame();
Wheel frontWheel = createWheel();
Wheel rearWheel = createWheel();
return createBicycle(frame, frontWheel, rearWheel);

}
}

Michael Ernst/John Guttag Slide 18Spring 2003

Specializations of the factory object

class RacingBicycleFactory {
Frame createFrame() { return new RacingFrame(); }
Wheel createWheel() { return new Wheel700c(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new RacingBicycle(frame, front, rear);
}

}

class MountainBicycleFactory {
Frame createFrame() { return new MountainFrame(); }
Wheel createWheel() { return new Wheel26inch(); }
Bicycle createBicycle(Frame frame, Wheel front, Wheel rear) {

return new MountainBicycle(frame, front, rear);
}

}

4

6.170
Spring 2003

Michael Ernst/John Guttag Slide 19Spring 2003

Use of the factory object

class Race {
BicycleFactory bfactory;
// constructor
Race() { bfactory = new BicycleFactory(); }
Race createRace() {

Bicycle bike1 = bfactory.completeBicycle();
Bicycle bike2 = bfactory.completeBicycle();
...

}
}

class TourDeFrance extends Race {
// constructor
TourDeFrance() { bfactory = new RacingBicycleFactory(); }

}

class Cyclocross extends Race {
// constructor
Cyclocross() { bfactory = new MountainBicycleFactory(); }

}

Michael Ernst/John Guttag Slide 20Spring 2003

Separate control over bicycles and races

class Race {
BicycleFactory bfactory;
// constructor
Race(BicycleFactory bfactory) { this.bfactory = bfactory; }
Race createRace() {

Bicycle bike1 = bfactory.completeBicycle();
Bicycle bike2 = bfactory.completeBicycle();
...

}
}
// No special constructor for TourDeFrance or for Cyclocross

Now we can specify the race and the bicycle separately:

new TourDeFrance(new TricycleFactory())

Michael Ernst/John Guttag Slide 21Spring 2003

Prototype

Every object is itself a factory
Each class contains a clone method that creates a copy of

the receiver object

class Bicyle {
Object clone() { ... }

}

Why is Object the return type of clone?

clone is declared in Object, and
Java does not permit subclasses
to change the return type of an
overridden method.

clone is declared in Object, and
Java does not permit subclasses
to change the return type of an
overridden method.

Michael Ernst/John Guttag Slide 22Spring 2003

Using prototypes

class Race {
Bicycle bproto;
// constructor
Race(Bicycle bproto) { this.bproto = bproto; }
Race createRace() {

Bicycle bike1 = (Bicycle) bproto.clone();
Bicycle bike2 = (Bicycle) bproto.clone();
...

}
}

Again, we can specify the race and the bicycle separately:

new TourDeFrance(new Tricycle())

Michael Ernst/John Guttag Slide 23Spring 2003

Sharing

Singleton: only one object exists at runtime
Interning: only one object with a particular (abstract)

value exists at runtime
Flyweight: separate intrinsic and extrinsic state, represent

them separately, and intern the intrinsic state

Michael Ernst/John Guttag Slide 24Spring 2003

Singleton

Only one object of the given type exists

class Bank {
private static bank theBank;

// constructor
private Bank() { ... }

// factory method
public static getBank() {

if (theBank == null) {
theBank = new Bank();

}
return theBank;

}
...

}

5

6.170
Spring 2003

Michael Ernst/John Guttag Slide 25Spring 2003

The second weakness of Java constructors

Java constructors always return a new object, never a pre-
existing object

Michael Ernst/John Guttag Slide 26Spring 2003

Interning

Reuse existing objects instead of creating new ones
Permitted only for immutable objects
Example: StreetSegment

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

101-200
(Street-

NumberSet)

(Street-
Segment)

"Mass Ave"
(String)

"O2139"
(String)

1-100
(Street-

NumberSet)

(Street-
Segment)

101-200
(Street-

NumberSet)

(Street-
Segment)

1-100
(Street-

NumberSet)

"Mass Ave"
(String)

"O2139"
(String)

Without interningWithout interning

With interningWith interning

Michael Ernst/John Guttag Slide 27Spring 2003

Interning mechanism

Maintain a collection of all objects
If an object already appears, return that instead

HashMap segnames = new HashMap(); // why not a Set?
String canonicalName(String n) {
if (segnames.containsKey(n)) {

return segnames.get(n);
} else {

segnames.put(n, n);
return n;

}
}

Java builds this in for strings: String.intern()
Two approaches:

– create the object, but perhaps discard it and return another
– check against the arguments before creating the new object

Set supports
contains but not get
Set supports
contains but not get

Michael Ernst/John Guttag Slide 28Spring 2003

Flyweight

Separate the intrinsic (same across all objects) and
extrinsic (different for different objects) state

Intern the intrinsic state
Good when most of the object is immutable

Michael Ernst/John Guttag Slide 29Spring 2003

Example: bicycle spoke

class Wheel {
FullSpoke[] spokes;
...

}
class FullSpoke {
int length;
int diameter;
bool tapered;
Metal material;
float weight;
float threading;
bool crimped;
int location; // rim and hub holes this is installed in

}

Typically 32 or 36 spokes per wheel, but only 3 varieties per bicycle.
In a 10,000-bike race, hundreds of spoke varieties, millions of

instances
Michael Ernst/John Guttag Slide 30Spring 2003

Alternatives to FullSpoke

class Spoke {
int length;
int diameter;
boolean tapered;
Metal material;
float weight;
float threading;
boolean crimped;

}

This doesn't work: it's the same as FullSpoke
class InstalledSpokeFull extends Spoke {
int location;

}

This does work, but there is a better solution
class InstalledSpokeWrapper {
Spoke s;
int location;

}

6

6.170
Spring 2003

Michael Ernst/John Guttag Slide 31Spring 2003

Original code to true (align) a wheel

class FullSpoke {
// Tension the spoke by turning the nipple the
// specified number of turns.
void tighten(int turns) {

... location ...
}

}

class Wheel {
FullSpoke[] spokes;
void align() {

while (wheel is misaligned) {
... spokes[i].tighten(numturns) ...

}
}

}

Michael Ernst/John Guttag Slide 32Spring 2003

Flyweight code to true (align) a wheel

class Spoke {
void tighten(int turns, int location) {

... location ...
}

}

class Wheel {
Spoke[] spokes;

void align() {
while (wheel is misaligned) {

... spokes[i].tighten(numturns, i) ...
}

}
}

Michael Ernst/John Guttag Slide 33Spring 2003

Flyweight discussion

What if FullSpoke contains a wheel field pointing at the
Wheel containing it?

What if FullSpoke contains a boolean broken field?

Flyweight is manageable only if there are very few mutable
(extrinsic) fields.

Flyweight complicates the code.
Use flyweight only when profiling has determined that

space is a serious problem.

Wheel methods pass this to the
methods that use the wheel field.
Wheel methods pass this to the
methods that use the wheel field.

Add an array of booleans in Wheel,
parallel to the array of Spokess.

Add an array of booleans in Wheel,
parallel to the array of Spokess.

