
Design Patterns

Outline

�� PurposePurpose

�� Useful DefinitionsUseful Definitions

�� Pattern OverviewPattern Overview

Purpose

To provide programmers with alreadyTo provide programmers with already

documented solutions to common problems.documented solutions to common problems.

Gives the programmers a common language.Gives the programmers a common language.

COMPOSITION?COMPOSITION?

Patterns != Frameworks

�� A framework provides actual code. You use A framework provides actual code. You use

patterns in a framework to create the code.patterns in a framework to create the code.

�� If someone gives you a pattern youIf someone gives you a pattern you’’ll get a ll get a

list of diagrams, itlist of diagrams, it’’s a concept. A s a concept. A

framework consists of actual code. framework consists of actual code.

(Remove)(Remove)

Useful Definitions

�� Object Object –– A package for both data and procedures A package for both data and procedures

(methods, functions) that operate on that data(methods, functions) that operate on that data

�� Class Class –– Definition of an object implementationDefinition of an object implementation

�� Encapsulation Encapsulation –– Abstract away implementation Abstract away implementation

details of a given objectdetails of a given object

�� Interface Interface –– All of the method signatures of a given All of the method signatures of a given

objectobject

Useful Definitions (cont’d)

�� Inheritance Inheritance –– SubSub--classing one object to another so it can classing one object to another so it can
inherit some properties of its parent while creating more inherit some properties of its parent while creating more
specific details for itselfspecific details for itself

�� Good: Subclasses are nice. A simple concept and easy Good: Subclasses are nice. A simple concept and easy
to use.to use.

�� Bad: Static, tied to it. When you change one thing you Bad: Static, tied to it. When you change one thing you
might have to change lots of classes. Inheritance is might have to change lots of classes. Inheritance is
determined at compile time, while aggregation is determined at compile time, while aggregation is
determined at run time.determined at run time.

�� Dynamic Binding Dynamic Binding –– The runThe run--time association of a request time association of a request
to an object and one of its operations (methods)to an object and one of its operations (methods)

�� Polymorphism Polymorphism –– The ability to substitute one object for The ability to substitute one object for
another without having to change any implementation another without having to change any implementation
detailsdetails

Useful Definitions (cont’d)

�� Instantiation Instantiation –– The act of creating an object (a.k.a. The act of creating an object (a.k.a.
an an instanceinstance of a class)of a class)

�� Abstract class Abstract class –– A class whose main purpose is to A class whose main purpose is to
define a common interface for its subclassesdefine a common interface for its subclasses

�� Abstract operation Abstract operation –– A declaration of a method A declaration of a method
with no implementation detailswith no implementation details

�� Concrete classes Concrete classes –– A class that contains A class that contains
implementation details.implementation details.

�� Override Override –– Allowing a subclass to handle its Allowing a subclass to handle its
method calls on its own by changing the method calls on its own by changing the
implementation of its parentimplementation of its parent

Useful Definitions (cont’d)

�� Aggregation Aggregation –– One object owns or is One object owns or is

responsible for another object. The second responsible for another object. The second

object is a part of the first. Both objects object is a part of the first. Both objects

have identical have identical lifespanslifespans

�� AquaintanceAquaintance –– One object knows of One object knows of

another, so it can make method calls to it, another, so it can make method calls to it,

however, neither objecthowever, neither object’’s lifespan is s lifespan is

dependent on the otherdependent on the other’’s.s.

Pattern Overview

�� StateState

�� TemplateTemplate

�� CompositeComposite

�� CommandCommand

�� StrategyStrategy

�� MediatorMediator

State Pattern

�� Intent: Intent:

��Provide the ability for an object to change Provide the ability for an object to change

its behavior in response to internal state its behavior in response to internal state

changes.changes.

Library

State Pattern

Library Asset

DVD Book Video

State Pattern

A

A = abstract

*

= acquaintance

Library Asset State

DVD Book Video CheckedOut OnShelf OnReserve

State Pattern

AA

A = abstract

* 1

= acquaintance = aggregation

State Pattern

public class Library {public class Library {

private List assets = new List<Asset>();private List assets = new List<Asset>();

……

}}

abstract public class Asset {abstract public class Asset {

State state = new State state = new onShelfonShelf();();

protected protected booleanboolean checkOutcheckOut() { () {

if(state.checkOutif(state.checkOut() = = true) {() = = true) {

changeState(newchangeState(new CheckedOut());CheckedOut());

return true;return true;

}}

elseelse

return false;return false;

}}

protected protected booleanboolean putOnShelfputOnShelf() { () { …… }}

protected protected booleanboolean putOnReserveputOnReserve() { () { …… }}

protected void protected void changeState(StatechangeState(State newStatenewState) {) {

state = state = newStatenewState;;

}}

}}

State Pattern

abstract public class State {abstract public class State {

protected protected booleanboolean checkOutcheckOut() { return false; }() { return false; }

protected protected booleanboolean putOnShelfputOnShelf() { return false; }() { return false; }

protected protected booleanboolean putOnReserveputOnReserve() { return false; }() { return false; }

}}

public class CheckedOut extends State{public class CheckedOut extends State{

private private booleanboolean putOnShelfputOnShelf() { return true; }() { return true; }

}}

public class OnShelf extends State {public class OnShelf extends State {

private private booleanboolean checkOutcheckOut() { return true; }() { return true; }

private private booleanboolean putOnReserveputOnReserve() { return true; }() { return true; }

}}

public class public class onReserveonReserve extends State {extends State {

private private booleanboolean checkOutcheckOut() { return true; }() { return true; }

}}

Template Method

�� Intent:Intent:

��Create a skeleton for an algorithm, while Create a skeleton for an algorithm, while

allowing subclasses to redefine certain allowing subclasses to redefine certain

steps.steps.

Template Method
TreeBaseClassA

setName()

getName()

addChildren()A

outputeHTML()A

TreeLeafClass

addChildren()

Template Method
TreeBaseClassA

setName()

getName()

addChildren()A

outputeHTML()A

TreeLeafClass

addChildren()

Template Method
TreeBaseClassA

setName()

getName()

addChildren()A

outputeHTML()A

AuthorClass

outputHTML()

DateClass

outputHTML()

HoursClass

outputHTML()

CodeClass

outputHTML()

CodeClass

outputHTML()

CodeClass

outputHTML()

Composite Pattern

�� Compose an object into a tree structure. Let Compose an object into a tree structure. Let

clients treat individual objects and clients treat individual objects and

compositions of objects as the same thing.compositions of objects as the same thing.

Composite Pattern

Component A

setName();

getName();

getAllFiles(List theList);

getContents(List theList);A

= aggregation

A = abstract

Composite Pattern

*

Component A

setName();

getName();

getAllFiles(List theList);

getContents(List theList);A

Directory
setName();

getName();

getAllFiles(List theList);

getContents(List theList);

= aggregation

A = abstract

Composite Pattern

TextFile ImageFile VideoFileDirectory

*

Component A

setName();

getName();

getAllFiles(List theList);

getContents(List theList);A

setName();

getName();

getAllFiles(List theList);

getContents(List theList);

setName();

getName();

getAllFiles(List theList);

getContents(List theList);

setName();

getName();

getAllFiles(List theList);

getContents(List theList);

setName();

getName();

getAllFiles(List theList);

getContents(List theList);

This object is also

known as a Composite

These objects are also

known as leaves

= aggregation

A = abstract

Composite Pattern

�� The component pattern will result in a tree The component pattern will result in a tree

structure.structure.

Component

Leaf

Component

Component

Component Leaf

LeafLeaf LeafComponent

Etc…

Component Pattern

abstract public class Component {abstract public class Component { // The component is the abstract// The component is the abstract

String String myNamemyName;; // class that all other elements will// class that all other elements will

// extend// extend

private void private void setName(StringsetName(String theNametheName) {) {

myNamemyName = = theNametheName;;

}}

private String private String getNamegetName() {() {

return return myNamemyName;;

}}

private void private void getAllFiles(ListgetAllFiles(List theListtheList) {) { // This method will loop through// This method will loop through

for all children {for all children { // all of the component// all of the component’’s childrens children

theList.append(childtheList.append(child)) // and add them to the list of files// and add them to the list of files

}}

}}

abstract private void abstract private void getContents(ListgetContents(List theListtheList););

}}

Composite Pattern

public class Directory extends Component { // Thpublic class Directory extends Component { // The directory is a componente directory is a component

private void private void getContents(ListgetContents(List theListtheList) { // Get the contents of this directory) { // Get the contents of this directory

for all children {for all children {

child.getContents(theListchild.getContents(theList););

}}

}}

}}

public class public class TextFileTextFile extends Component { // This is a leaf elementextends Component { // This is a leaf element

private void private void getContents(ListgetContents(List theListtheList) {) {

theList.append(thistheList.append(this);); // The leaf node adds itself to the// The leaf node adds itself to the

}} // list its parent// list its parent’’s contents lists contents list

}}

Command Pattern

�� Intent:Intent:

Encapsulate a request as an object. This Encapsulate a request as an object. This

allows action to occur without knowing allows action to occur without knowing

exactly what request is being made.exactly what request is being made.

Command Pattern

Document

undo();

copy();

print();

Application

add(Document)

= acquaintance = aggregation

*

Command Pattern

Menu

add(MenuItem)

MenuItem

clicked();

Application

add(Document)

= acquaintance = aggregation

*

* *

Document

undo();

copy();

print();

Command Pattern

Menu

add(MenuItem)

MenuItem

clicked();

setTheCommand(StringsetTheCommand(String))

Application

add(Document)

CommandA

Execute();

= acquaintance = aggregation

*

* *

1Document

undo();

copy();

print();

A = abstract

Command Pattern

CommandA

execute()

execute()

UndoCommand

execute()

CopyCommand

execute()

PrintCommand

A = abstract

Command Pattern

public class public class MenuItemMenuItem {{

public Command public Command commandcommand;;

public void Clicked() {public void Clicked() {

command.executecommand.execute();(); // Simply call execute and // Simply call execute and

}} // the type of the command// the type of the command

// determines what exactly occurs// determines what exactly occurs

public void public void setTheCommand(StringsetTheCommand(String theCommandtheCommand) {) {

command = command = theCommandtheCommand;;

}}

}}

Command Pattern

abstract public class Command {abstract public class Command {

abstract private void execute();abstract private void execute();

}}

public class UndoCommand {public class UndoCommand {

document.undodocument.undo();();

}}

public class public class CopyCommandCopyCommand {{

document.copydocument.copy();();

}}

public class public class PrintCommandPrintCommand {{

document.printdocument.print();();

}}

Strategy Pattern

�� Intent:Intent:

Encapsulate a family of algorithms and Encapsulate a family of algorithms and

make them interchangeable. This allows make them interchangeable. This allows

the algorithm to very independently from the algorithm to very independently from

the clients that will be using itthe clients that will be using it

Mediator

�� Intent:Intent:

Define an object that encapsulates how a Define an object that encapsulates how a

set of objects interact.set of objects interact.

One Final Example
// Template// Template

public public ActionForwardActionForward execute(ActionMappingexecute(ActionMapping mapping, mapping, ActionFormActionForm form, form, HttpServletRequestHttpServletRequest request, request,
HttpServletResponseHttpServletResponse response) throws Exception {response) throws Exception {

super.execute(mappingsuper.execute(mapping, form, request, response);, form, request, response);

baseForm.setCommandbaseForm.setCommand(); // Factory(); // Factory

prepareAction(requestprepareAction(request, , baseFormbaseForm););

isFormValidisFormValid = = ValidationValidator.isFormValidCritereon(baseFormValidationValidator.isFormValidCritereon(baseForm, , getSearchCriterionValidations(baseFormgetSearchCriterionValidations(baseForm));));

performAction(requestperformAction(request, , baseFormbaseForm););

return return baseForm.getCommand().searchActionForward(mappingbaseForm.getCommand().searchActionForward(mapping, , baseFormbaseForm););

}}

// Command// Command

Protected void Protected void performAction(HttpServletRequestperformAction(HttpServletRequest request, request, BaseFormBaseForm baseFormbaseForm) throws Exception {) throws Exception {

this.baseForm.getCommand().performAction(this.baseFormthis.baseForm.getCommand().performAction(this.baseForm, fa, faççade, this, request);ade, this, request);

}}

//Fa//Faççadeade

Public void Public void performAction(BaseFormperformAction(BaseForm baseFormbaseForm, , WebFacadeWebFacade facade, facade, BaseActionBaseAction baseActionbaseAction, , HttpSerbletRequestHttpSerbletRequest request) request)
throws Exception {throws Exception {

this.checkForData(baseForm.getHandlesToActionthis.checkForData(baseForm.getHandlesToAction());());

facade.holdSettlements(baseForm.getHandlesToActionfacade.holdSettlements(baseForm.getHandlesToAction());());

}}

