

Prototype Pattern
●Creational pattern that should be used when the
type of objects to create is determined by a
'prototypical instance', which is cloned to produce
new objects
●Avoids sub-classes of an object creator in the
clien application (like abstract factory does)
●Biggest reason for using it (in Tom's opinion) – it
avoids inherent cost of creating a new object in
the standard way (via new) in cases where
producing initial values for the fields of the object
is costly (must be gathered from DB, calculated
using time-consuming algorithm, etc.)

It's all about Clones!

Prototype Pattern
●In Java, utilize clone() to aid in this pattern (C# has
MemberwiseClone)
●If you want to clone an object of a class it must
implement the Cloneable interface
●Object's clone performs a shallow copy of existing object
– if object has references to other mutable objects, you
should add code to clone method of class you are
cloning to perform a deep copy (by calling clone on the
necessary objects that are fields of the current object)
●Deep copy can be done with serialization or even
reflection and recursion
●BTW: clone is Java's copy constructor for those of you
C++ minions

Prototype UML

Participants and Process
●Client - creates a new object by asking a
prototype to clone itself.
●Prototype - declares an interface for cloning itself.
●ConcretePrototype - implements the operation for
cloning itself.
●The process of cloning starts with an initialized
and instantiated class.

● The Client asks for a new object of that type
and sends the request to the Prototype class.

● A ConcretePrototype, depending of the type of
object is needed, will handle the cloning
through the Clone() method, making a new
instance of itself.

Prototype Thoughts

●Prototype does not mean a 'not ready for prime
time' version of the object, it means the standard
version of the object after construction and
initialization of the fields of that object
●Similar to Abstract Factory in that both use
delegation (NOTE: Abstract Factory sometimes
incorporates Prototype)
●Simplest to most complex in terms of the process
of creating an object: Factory, Prototype, Builder,
Abstract Factory

Code Example
public interface Prototype {

public abstract Object clone ();
}

public class ConcretePrototype implements Prototype {
public Object clone() {

return super.clone();
}

}

public class Client {

public static void main(String arg[])
{

ConcretePrototype obj1= new ConcretePrototype ();
ConcretePrototype obj2 = ConcretePrototype)obj1.clone();

}

}

Applicability
●Use when

● Prototype Pattern when a system should be
independent of how its products are created,
composed, and represented

● Classes to be instantiated are specified at run-
time

● Avoiding the creation of a factory hierarchy is
needed/desired (hierarchy can lead to
explosion of classes)

● It is more convenient to copy an existing
instance than to create a new one.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

