CSCD 433/533 Advanced Networks

1

Lecture 2 Network Review Winter 2017

Reading: Chapter 1

Topics

- Network Topics Some Review from CSCD330
 - Applications
 - Common Services
 - Architecture
 - OSI Model
 - AS and Routing Review
 - Packet vs. Circuit Switching
- Review concepts for Design Goals

Review Topics for Design

- Useful to review topics we covered in CSCD330 with respect to their design
- This course will be exploring how network components fit together to form a complex system
- Where in this system can we increase efficiency, change design for the better, look at continuing trends for networks

- Most of you know or recall many of the things we learned in CSCD330
- See how much you remember

Building Blocks of Networks Applications

- Look at network applications we all use
- Look at network services they need

Building Blocks of Networks Applications

- Two main types of applications
 - 1. Data transfer
 - Web pages
 - File transfer
 - 2. Streaming Audio and Video
 - Real-time Audio and Video
 - Voice Over IP
 - Some have elements of both
 - Online games.
 - Network Design Issues
 - Where to put common network services

- Network Applications
 - What we want is to have common set of network services
 - Otherwise
 - Each application needs to build its own network communications
 - Why is this bad?
 - Makes applications more complicated than
 necessary
 - Redundant to build communications into each application

- Challenge
 - To provide useful set of services that gives choices to applications
 - Need to understand "design patterns" of network applications
 - What are some common needs of network applications?

• File Transfer

- Important use of networks from the beginning
- Involves a client sending a request and a server responding with data or Peers providing file chunks

Video or Audio Streaming or Static Text/Image Transfer

Reliability

- Networks can fail
- Machines crash, network lines are cut, electrical interference, deliberate interference, hardware problems
- Ideally, network design should incorporate error correction so network applications don't need to be aware of failures

• Security

Network applications need security

- Question is ... should every application do their own encryption and other security protocols or Should security be a service offered
 - Network level
 - Application level

- Shared Resources
 - Need to accommodate each application
 - Fair use of network
 - Regulate or stop traffic if too much
 - Allow full network use when traffic is light
 - Possible priority for some applications

Network Architecture

- Layering and Protocols
 - Abstraction
 - How does abstraction work in software?
 - Hides details behind an interface
 - Manages complexity
 - Provides an interface that can be manipulated by other components of the system
 - Hides details of how object is implemented

Network Architecture

- Challenge
 - Identify useful abstractions to provide universal service and
 - Do it efficiently

- Abstractions in Networks
 - How do networks do abstraction?
 - Layers !!!!

Layering

- Start with services provided by the hardware, then add layers, each providing services to the layer just above it
- Why is this an advantage for networks?
 - Decomposes complex problem
 - Makes pieces more manageable
 - More modular design
 - Easier to add a new service or to modify functionality of a layer

Layering Example

- Example of protocol layering
 - HTTP Web Browsing

- Uses services from TCP, reliable delivery
- Uses services provided by IP, unique addressing
- Uses services provided by Ethernet, ARP address mapping from IP to MAC address
- How do we refer to this set of Protocols?
 - Network Stack

Network Architecture

- Abstract Objects within a Network
 - Protocols
 - Each layer, protocols use encapsulation
 - Attach headers/trailers to packets
 - Instructions for Peer protocols on receiving end
 - Body of message data

Network Architecture

OSI Model

- Original OSI model and
- Its Current or Modern Form
- Who can draw these models on the board?

Original OSI Model, 7 Layers

Original OSI Model

OSI and the TCP/IP Suite

OSI and TCP/IP

Source: "Introducing TCP/IP," by FindTutorials.com

Essential Characteristics of IP

What are they?

- Connectionless
 - Each IP datagram is treated independently and may follow a different path
- Best effort
 - No guarantees of timely delivery, ordering, or even delivery
- Globally Unique 32-bit Addresses
 - Usually expressed in dot-decimal notation: 128.17.75.0
 - Each interface has its own IP address

Essential Characteristics of IP Time to Live (TTL)

- IP datagram headers contain a TTL field
 - At each router, this field is decremented; if it reaches 0, datagram is discarded and an error message is generated
- Original purpose was to prevent datagrams from endlessly circulating within the network

ICMP

- Internet Control Message Protocol (ICMP)
 - Used by hosts, routers and gateways to communicate network layer information to each other
 - Typically used for error reporting
- Uses IP Delivery
 - ICMP messages are carried as IP payload
- ICMP messages
 - Type and code contain first 8 bytes of IP datagram that caused ICMP message to be generated
- Many Common Utilities
 - Ping, and Traceroute
 - Implemented by ICMP messages

Autonomous Systems (AS's)

- What are they?
- Autonomous system (AS) is unit of router policy
 - Either single network or group of networks controlled by a common network administrator
 - On behalf of a single administrative entity
 - Such as a university, a business enterprise, or a business division

ISPs and Telephone Companies

- Have their Networks, connected using routers that support communication in a hierarchy
- Companies contract with each other for mutual use of backbone resources
- Define protocols for communication between and within AS's

Network Trends and Open Problems

- Making networks easier to manage
 - Has been strong interest in "self-managing" networks
- Improving trust/identity in networks
 - Spam, phishing attacks, etc.
- Policy-related issues (net neutrality, government censorship, spying on civilians)
- Meeting increasing demands of diverse set of applications
 - Real-time needs, bandwidth consumptive
 - Streaming video, VOIP, Television over IP

Network Models

Network Communication Models

Recall, What are the two main ways networks communicate? Two types of models ...

- 1. Circuit Switching
- 2. Packet Switching

Circuit Switching

- Resources are reserved
- Establishes a connection (circuit) to the destination
- Source sends data over circuit
 - Constant transmission rate
- Example: Telephone Network
 - Very early versions: Human-mediated switches.
 - Early versions: End-to-end electrical connection
 Today: Virtual circuits

Circuit Switching

Advantages and Disadvantages?

Advantages

- Fast and simple data transfer, once circuit has been established
- Predictable performance since circuit provides isolation from other users
- Guaranteed bandwidth

Circuit Switching

- Advantages and Disadvantages?
- Disadvantages
 - Does not handle bursty traffic very well
 - Users have differing needs for bandwidth
 - What if all resources are allocated?

Packet Switching

- Resources are not reserved
- Packets are self-contained
 - Each has a destination address

- Each packet travels independently to the destination host
 - Routers and switches use the address in the packet to determine how to forward the packets

Resource Sharing: Packet Switching

- Statistical multiplexing
- Switches Arbitrate between inputs

- Can send from *any* input that's ready
 - Links are never idle when traffic to send
 - Efficient
 - Requires buffering/queues

Forwarding: Packet-Switched Networks

- Each packet contains a destination in the header
 - Much like a postal address on an envelope
- Each hop ("router" or "switch") inspects the destination address to determine the next hop

Summary

- Brief review of CSCD330 content
- Beginning of Network Design

"Someone calling themselves a customer says they want something called service."

- Network applications Common Services
 - Their needs for network services
 - How we can optimally meet these needs

More topics later ... Stay Tuned

Next time: Reading Chapter 1 for this lecture, Chapter 2 for next time

End

Common Services

Security

Network applications need security

Question is ... should every application do their own encryption and other security protocols or Should security be a service offered

- Network level
- Application level

Network Communication Models

Recall, What are the two main ways networks communicate? Two types of models ...

- 1. Circuit Switching
- 2. Packet Switching

29

Summary

Brief review of CSCD330 content

Beginning of Network Design

"Someone calling themselves a customer says they want something called service."

Network applications - Common Services

- Their needs for network services

- How we can optimally meet these needs

More topics later ... Stay Tuned

