

CSCD433/533
Advanced Networks

Winter 2017
Lecture 13

 Raw vs. Cooked Sockets

Introduction

• Better Understand the Protocol Stack
– Use Raw Sockets
– So far, sockets in Java either

• TCP or UDP based

– In fact, Java does not have built-in support for Raw
Sockets!!!

– To program Raw Sockets in Java - Use Libraries
– C and Python have native support for Raw Sockets

Motivation for Raw Sockets

• Standard Java Sockets do not fit all our needs
• Normal sockets lack some functionality

 1. We cannot read/write ICMP or IGMP protocols with
 normal sockets
 Ping tool cannot be written using normal sockets

 2. Some Operating Systems do not process Ipv4
 protocols other than ICMP, IGMP, TCP or UDP
 What if we have a proprietary protocol that we

 want to handle?
 How do we send/receive data using that protocol?
 Answer: Raw Sockets!!!

Raw Socket Defined
 Raw sockets allow a program or application to

provide custom headers for a protocol which are
otherwise provided by kernel/os network stack

 Raw sockets allow adding custom headers
instead of headers provided by underlying
operating system

 Bypasseses network stack and allows an
application to also process packet headers

 5

What can raw sockets do?

 Bypass TCP/UDP layers
 Read and write ICMP and IGMP packets

 ping, traceroute, multicast daemon
 Read and write IP datagrams with an IP protocol field not

processed by the kernel
 OSPF – sits directly on top of IP
 User process versus kernel

 Send and receive your own IP packets with your own IP
header using the IP_HDRINCL socket option
 Can build and send TCP and UDP packets
 Testing, hacking
 Only superuser can create raw socket though

 You need to do all protocol processing at user-level

Normal Sockets - Cooked

 Normal sockets, use OS kernel and built-in
network stack to add headers like IP header and
TCP header

 So an application only needs to take care of
what data it is sending and what reply it is
expecting

 Headers are added and removed without your
application having to worry about this

More Motivation for Raw Sockets

• Recall, CSCD330, can we send true ICMP
packets in Java?

– Not exactly.

– There is this work-around
InetAddress.getByName("192.168.1.1").isReachable(4000);
– What does this do?

What does this do?
• InetAddress.getByName("192.168.1.1").isReachable(4000);

– Does several things depending on OS and user
permissions

• Linux/MacOS
• Linux/MacOS environment, no Superuser rights,

JVM tries to establish TCP connection on port 7
– Function returns true if TCP handshake is successful

• With Superuser rights,
Correct ICMP request is sent and function returns true if
an ICMP reply is received

• Windows XP
• Windows XP environment, TCP handshake is used to

test if machine is up, no matter if program has admin
rights or not

Solution Using Raw Sockets

• There is a way in java, using various libraries
– Using an older library jpcap, it is possible to

assemble and send ICMP Packets
– The library is here

 http://www.sf.net/projects/jpcap
 Newer Library

 jNetPcap
 http://jnetpcap.org/

Recall Network Packets

Some slides courtesy of Vivek Ramachandran

Where does the
Socket sit?

The gory details …..

More Details Raw sockets

– All Headers i.e. Ethernet, IP, TCP etc are
stripped by network stack and only data is
shipped to application layer

– We cannot modify packet headers of packets
when they are sent out from our host

– Is this a good thing in general?

 Application Data

Headers Data
 Network
 Stack

Sending arbitrary packets – Packet
Injection
• We “manufacture” our own packets and send it

out on the network.
– Absolute power!!!

• Total network stack bypass
• Most active network monitoring tools and

hacking tools use this.
• Dos attacks ? Syn Floods ? IP Spoofs ?
• Plus, network tools like Wireshark

Raw Sockets – a closer look

Application

Raw Socket

Getting All headers - Sniffing

• Note: Way it has worked in past
• Once we set NIC interface to promiscuous

mode we can get “full packets” with all
the headers.
– We can process these packets and extract

data from it
– Note, we are receiving packets meant for all

hosts

Promiscuous Mode of NIC Card

• It is the “See All, Hear All” mode
– Tells network driver to accept all packets

irrespective
• Used for Network Monitoring – both legal and

illegal monitoring
• We can do this by programmatically setting the

IFF_PROMISC flag or
• Using the ifconfig utility (ifconfig eth0 promisc)

Possible to Inject Packets

• If we could receive frames for all
computers connected to our broadcast
domain ….

• And, If we could get all the headers
– Ethernet , TCP, IP etc from the network and

analyze them
• Then, we could inject packets with custom

headers and data into the network directly

More on Promiscuous Mode

• Questions
• Under what circumstances can we see all

packets on a LAN segment?
• Is promiscuous mode truly magic?

More on Promiscuous Mode

• Under what circumstances can we see all
packets on a LAN segment?

• Is promiscuous mode truly magic?
• Answer: NO

– Can see broadcast traffic
– Can see all traffic if hosts are on a hub
– Can see all traffic if one switch port is a mirror or

spanning port
– Can see all traffic, if card is able to go into

promiscuous mode and LAN is wireless
• Recall, data should be encrypted these days !!!

Library Support for Raw Sockets

• In Java, no way to get to RAW interfaces in OS
kernels with standard Java libraries
– Two C libraries support standard way of

interfacing to network cards
– Libpcap – Linux/MAC/Unix
– Winpcap – Windows

Both use something called the Berkeley
Packet Filter - BPF

Link Layer Packet Capture

• Stevens in his classic book, makes a distinction
between Raw Sockets and capturing packets at
the link layer with a packet filter

• See, Unix Network Programming by R. Stevens, B.
Fenner and A. Rudoff for details

• For our purposes, since Java doesn't have true
RAW socket interface, only way we can capture
raw traffic is through link layer packet capture

• Jpcap or jNetPcap running on top of libpcap
library is one example of Java special purpose
library

Picture of this

App App

Buffer Buffer

BPF DataLink

IPv4 IPv6

Process

Kernel

Copy Received

BPF – Berkeley packet
Filter

Gets copy after received

Libpcap uses BPF and
PF_Packet in Linux

Berkeley Packet Filter

 Berkeley Packet Filter (BPF) provides
 Raw interface to data link layers, permitting raw link-layer

packets to be sent and received
 It is available on most Unix-like operating systems
 BPF provides pseudo-devices that can be bound to a

network interface
 Reads from device reads buffers full of packets

received on network interface, and
 Writes to device will inject packets on network

interface

https://en.wikipedia.org/wiki/Berkeley_Packet_Filter

jNetPcap As an Example
• jNetPcap

– Open source library for capturing and sending network packets
from Java applications

– Runs on both Linux and Windows

It contains:
– * A Java wrapper for nearly all libpcap library native calls
– * Decodes captured packets in real-time
– * Provides library of network protocols (core protocols)
– * Users can add own protocol definitions using java SDK
– * jNetPcap uses mixture of native and java implementation
 for optimum packet decoding performance

 http://jnetpcap.org/

jNetPcap and Other Java Raw Libraries

 C Language allows native access to Raw Socket
interface

 More details are left to you, the programmer
 Must build the headers for IP, TCP, UDP or any

new protocol you might create
 More work, but gives you more control
 Look at C example next time ….

Java jNetPcap

 For Most Programs written Using jNetPcap
 First, you need to acquire a list of available network interfaces for

working with the live network
 Pcap.findAllDevs()

 Second, you need to use one of static open calls found in
 Pcap class, Pcap.openXXXX()

 Third, after open call succeeds, do something through return Pcap
class instance such as read packets, write packets or acquire
some information about network interface

 Pcap.sendPacket(), Pcap.loop(), Pcap.dispatch()

Java jNetPcap

● Example program
● Classic Example

Provide a list of devices
Presents a simple menu
We will select one for the user

 Using a packet handler, it loops to catch
 few packets, say 10.
 Prints some simple info about the packets
 Closes the pcap handle and exits

Java jNetPcap - Example
• You need to indicate in jNetPcap which network device you

want to listen to
• API provides Pcap.findAllDevs() class
// First get a list of devices on this system
 int r = Pcap.findAllDevs(alldevs, errbuf);
 if (r == Pcap.NOT_OK || alldevs.isEmpty()) {
 System.err.printf("Can't read list of devices, error is %s",
 errbuf.toString());
 return;
 }

 System.out.println ("Network devices found:");

Java jNetPcap
 // Print the list of devices on this system
 int i = 0;
 for (PcapIf device : alldevs) {
 String description =
 (device.getDescription() != null) ? device.getDescription()
 : "No description available";
 System.out.printf("#%d: %s [%s]\n", i++, device.getName(),
 description);
 }
 PcapIf device = alldevs.get(0); // We know we have 1 or more device
 System.out.printf("\nChoosing '%s' on your behalf:\n",
 (device.getDescription() != null) ? device.getDescription()
 : device.getName());

Java jNetPcap
 //Second we open up the selected device
 int snaplen = 64 * 1024; // Capture all packets, no truncation
 int flags = Pcap.MODE_PROMISCUOUS; // capture all
 int timeout = 10 * 1000; // 10 seconds in millis
 Pcap pcap =
 Pcap.openLive(device.getName(), snaplen, flags, timeout,
 errbuf);

 if (pcap == null) {
 System.err.printf("Error while opening device for capture: "
 + errbuf.toString());
 return;
 }

Java jNetPcap
 // Third we create a packet handler which will receive packets from the libpcap loop.

 PcapPacketHandler<String> jpacketHandler = new PcapPacketHandler<String>() {

 public void nextPacket(PcapPacket packet, String user) {

 System.out.printf("Received packet at %s caplen=%-4d len=%-4d %s\n",

 new Date(packet.getCaptureHeader().timestampInMillis()),

 packet.getCaptureHeader().caplen(), // Length actually captured

 packet.getCaptureHeader().wirelen(), // Original length

 user // User supplied object

);

 }

 };

 // Fourth we enter the loop and tell it to capture 10 packets.
 pcap.loop(10, jpacketHandler, "jNetPcap rocks!");

JPCAP Example
The packet output of executing the test class looks like this

Network devices found:
#0: lo [No description available]
#1: any [Pseudo-device that captures on all interfaces]
#2: wlan0 [No description available]
#3: eth0 [No description available]

Choosing 'wlan0' on your behalf:

Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=66 len=66 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:19 PST 2017 caplen=1486 len=1486 jNetPcap rocks!
Received packet at Sun Feb 26 20:48:20 PST 2017 caplen=1486 len=1486 jNetPcap rocks!

Summary

• Raw sockets through jNetPcap allows
capability not built into Java
– Raw sockets are possible
– Can write programs that gain access lower

level protocols
– Gives power to you, the programmer!!!
– Allows for fun in manipulating packets!

References

jNetPcap - Examples
http://jnetpcap.org/examples/
jNetPcap Tutorial
http://jnetpcap.org/tutorial
Capturing network packets – Blog – Windows Example
https://compscipleslab.wordpress.com/2013/02/17/capturin

g-network-packets-through-java/

Midterm due today ….

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

