
A critical review of “End-to-end arguments in system design”

Tim Moors
moors@ieee.org

Polytechnic University
5 Metrotech Center

Brooklyn, NY 11201, USA

Abstract- The end-to-end arguments raised by Saltzer, Reed

and Clark in the early 1980s are amongst the most influential of
all communication protocol design guides. However, they have
recently been challenged by the advent of firewalls, caches, ac-
tive networks, NAT, multicasting and network QOS. This paper
reviews the end-to-end arguments, highlighting their subtleties,
and provides additional arguments for and against end-to-end
implementations. It shows the importance of trust as a criterion
for deciding whether to implement a function locally or end-to-
end, and how end-to-end implementations can help robustness,
scalability, ease of deployment, and the provision of appropriate
service. It focuses on the performance implications of end-to-
end or localized functionality, and argues against end-to-end
congestion control of the form used by TCP.

I. INTRODUCTION

The paper “End-to-end arguments in system design” [1]
(henceforth called “The Paper”) has had a profound impact
since it was published in 1984. For example, the literature
contains numerous comments saying that the end-to-end ar-
guments are “one of the most widely applied rules of system
design” [2] and one of few general architectural principles of
the Internet [3]. Yet the very success of The Paper has often
led to people accepting the principle dogmatically, or apply-
ing it without considering the attendant subtleties. Further-
more, new networking products and architectures such as
firewalls, caches and Network Address Translators, active
networks, multicasting and network Quality Of Service all
challenge the end-to-end arguments. At the same time, the
recent success of peer-to-peer networking exemplifies the
benefits of end-to-end implementations.

This paper reviews The Paper, and highlights new argu-
ments for (and against) end-to-end implementations that have
become pronounced in the 20 years since The Paper was pub-
lished. The authors of The Paper have themselves revisited
the original principle in a modern context, evaluating active
networking in terms of end-to-end arguments [4], one author
(Reed) has written on how end-to-end arguments remain per-
tinent today [5], and another (Clark) has written about their
role in the context of the changing requirements of the Inter-
net [6].

This paper first describes the primary end-to-end argument
and the “careful file transfer” case study, as presented in The
Paper. It then considers the performance implications of end-
to-end implementations, and describes additional end-to-end
arguments. Finally, it considers how responsibility and trust
affect the applicability of the end-to-end arguments, and
evaluates the suitability of end-to-end implementations of
error control, security, routing and congestion control.

II. THE END-TO-END ARGUMENTS

The “end-to-end arguments” guide the placement of functions
in a communication network. Certain functions can be im-
plemented in both end systems and the network, e.g. error
control, security, and routing. The end-to-end arguments
suggest that those functions would be better implemented in
the endpoints. While The Paper presents multiple end-to-end
arguments, it emphasizes one relating to correctness of func-
tion. “[T]he end-to-end argument” states that certain func-
tions “can completely and correctly be implemented only
with the knowledge and help of the application standing at
the endpoints of the communication system. Therefore, pro-
viding [such] function[s completely] as a feature of the com-
munication system itself is not possible. (Sometimes an in-
complete version of the function provided by the communica-
tion system may be useful as a performance enhancement.)”
[1, p. 278]. (We will return to the other end-to-end arguments
in § E.)

A. An example
The Paper includes a case study of “careful file transfer” as
an example of the application of end-to-end argument. As
illustrated in Fig. 1, the “careful file transfer” involves trans-
ferring a file from the disk on a source computer to the disk
on a destination computer. The file may become corrupted at
various points on the end-to-end path, e.g. on the communica-
tion channel (�), in intermediaries such as the router (�), or
during disk access (�). For examples of the causes of errors,
the reader should refer to an error-control text such as Lin
and Costello [7] for discussion of link errors, and to Stone
and Partridge [8] for a discussion of router and end-system
errors. The authors argue that only a check made at the end-
points (i.e. from information stored on the disks) can

Transport

Link

Application

Network

Transport

Link

Application

Network

Link

Network

Destination computer Source computer

Router

�

�

�

Fig. 1: Errors can occur at different points (�, �, and �) on
the end-to-end path.

“completely and correctly” ensure that no error has been in-
troduced.

B. Defining correctness
It is important to scrutinize what is meant by “complete and
correct” implementation of a function. The service of secrecy
can be implemented completely and correctly by the applica-
tions in Fig. 1 using one-time-pads, in that the destination
application can decrypt the file being transferred, but at no
time do entities at other points in the network (e.g. �, �, and
�) have sufficient information to decrypt the file. On the
other hand, there is no way to provide similar absolute guar-
antees for integrity: To enhance integrity, the source adds to
the payload certain information (e.g. a CRC) that produces
redundancy within the transmitted information. The destina-
tion then checks that the redundancy remains in the received
information. It is always possible, albeit perhaps improbable,
that a modification can change the transmitted information to
a new value that contains the redundancy of the form ex-
pected by the destination. Thus, we argue that while it makes
sense to discuss integrity being provided over the complete
path that the information traverses, it is not possible to com-
pletely ensure integrity due to the probabilistic nature of in-
tegrity checks.

An extreme form of lack of correctness is total failure. The
Internet architecture was influenced by military desire for
robust operation when network elements become unavailable
[9], which led to displacing functions that relied on state in-
formation for proper operation to the end systems. This is
based on the “fate-sharing model [that] suggests that it is ac-
ceptable to lose the state information associated with an en-
tity if, at the same time, the entity itself is lost” [9]. In a
sense, fate can be viewed as being an extreme form of cor-
rectness: An end that does not trust the fate of an intermediate
system may also not trust the ability of the intermediate sys-
tem to perform other functions correctly.

C. Carefully identifying the ends
To apply the end-to-end arguments, it is not surprising that
one must identify the communication endpoints. The ends
are the points where the information is originally generated
or ultimately consumed. The Paper points out that in interac-
tive speech, the ends are not the telephones, but rather the
people. This highlights an important, but subtle point: that
for payload information the end is usually the uppermost en-
tity in the system, such as a human user.

Returning to the careful file transfer example, The Paper
suggests that file transfer applications are the endpoints, and
that after the destination has stored the file to disk, it should
read the file off disk and calculate an integrity check, which it
returns to the source application, which decides whether the
transfer was “correct”. This use of application-layer checks
is also supported by a recent study of the sources of data
transfer errors [8]. However, it is a popular belief (e.g. [2, p.
289][10]) that the transport layer (e.g. TCP) is the endpoint
for applications such as file transfers. The transport layer
merely resides in the end-system. The transport layer checks
will not protect against errors introduced as the information is

written to disk. (Note that while natural noise and potential
design errors are omnipresent, physical security measures
(e.g. electromagnetic shielding) can isolate a system from
security threats. Thus, if the user trusts the end system then
the transport layer of the end system may constitute a security
endpoint.) According to the end-to-end arguments, applica-
tions, not transport layers, should check integrity.

So why do most applications entrust transport layers such
as TCP to provide reliable transfer? There are two reasons
for this: the first reason is the high cost of the application
performing the error checking, and the second reason is the
low benefit from this activity.

The first reason is that application writers do not wish to be
burdened with reliable transfer considerations. Reliable
transfer protocols are complicated, and the endpoint may not
have the capacity to implement the service (e.g. dumb termi-
nals such as telephones), although progress in semiconductor
technology outlined by Moore’s Law is circumventing this.
Alternatively, the endpoint designer may not understand how
to implement the complicated function correctly, although
this can be avoided with the Protocol Organs technique of
making protocol functions available through a library [11].
Reliable transfer protocols also involve significant overhead
in order to check the information that has been delivered [12],
e.g. disk access at the destination of the careful file transfer
example is doubled by the requirement of reading the file off
the disk to check it. Furthermore, if the ultimate endpoint is a
human, the system designers generally do not want to make
the human user solely responsible for the menial task of
checking integrity. Finally, for the application to check for
errors within the computer, it must also account for the possi-
bility of itself, and not the data, being in error. Such totally
self-checking systems are non-trivial [13].

The second reason is that for most applications, the error
rate within the end-system is negligible. For example, when
applications store or move information within the computing
system, they generally assume that the system will not alter
the information. Low-level hardware is often designed with
this assumption in mind, e.g. providing error control to pro-
tect memory from soft DRAM errors. It is only when the
information has an appreciable chance of being corrupted,
e.g. when traversing an unreliable network, that the applica-
tion seeks integrity checks. The crux of the issue is how does
the application know whether its information will experience
appreciable errors? It is relatively easy for the application to
know about the reliability of its local system, but more diffi-
cult for it to know about the reliability of intermediaries that
its data must pass through as it crosses a network. Thus, the
decision to implement reliable transfer in the transport layer
is not justified on the basis of end-to-end arguments, but
rather on the basis of trust. We will return to this issue of
trust in § III.

It is important that the application be able to disable integ-
rity checking by the transport layer (and this is not possible
with the most popular reliable transport protocol, TCP). This
is because while most applications can neglect the chance of
errors in the local system, some applications will be con-
cerned about errors in the local system (e.g. when writing to

disk), and may implement their own, truly end-to-end checks.
By the end-to-end argument, such end-to-end checks render
lower-layer checks redundant and useful (or detrimental) only
in terms of performance. Also, interactive applications im-
plicitly provide positive acknowledgements (though not error
recovery) of receipt of requests by sending the corresponding
reply. Again, for such applications, transport layer mecha-
nisms for providing reliable transfer may only impede per-
formance.

D. Performance
The Paper notes that local implementations of functions may
enhance performance above that achievable using end-to-end
implementations alone. In this section, we first consider how
local implementations may enhance performance, and then
consider how they may degrade performance.

Performance benefits of localized implementations
We will first consider the function of error control, and then
extend to other functions such as multicasting and QOS.

Localized error detection reduces the network load by re-
ducing the distance that erroneous packets will propagate
through the network. Localized error recovery also reduces
the network load by reducing the distance that retransmitted
packets must propagate. Localized error recovery can also
reduce the delay in delivering the packet with integrity, be-
cause of these reduced distances that the erroneous packet
and retransmission must propagate, and because the propaga-
tion delay (as used to dimension retransmission timers) across
a hop is likely to be smaller and less variable than the end-to-
end propagation delay. (Smaller propagation delays also
benefit localized flow control and congestion control.)

If routing is performed locally within the network, as is
common, then terminals may not know which links their traf-
fic will traverse. The efficiency of retransmission-based error
control depends on the bit error rate of the link, and can be
improved by choosing a segment size that is appropriate for
the bit error rate (e.g. small segments when the BER is high).
However, this requires segmentation within the network, and
separate error control within the network. Thus, again, local-
ized error control can offer improved efficiency.

Multicasting can be implemented end-to-end (e.g. by a
source sending separate copies of the information to each
destination), or locally (e.g. by the network copying the in-
formation as it branches towards the destinations), or a com-
bination of both. Localized multicast branching can reduce
the transmission load on the source, and the network near the
source. Similarly, if nodes in the multicast tree leading from
the source root to destination leaves can aggregate flow con-
trol or acknowledgement information from the destinations,
or even retransmit information as needed, then they can re-
duce the load on and near the source. Caching provides simi-
lar benefits to localized multicasting in that both techniques
expand information at points within the network, reducing the
distance that it must travel. Content Distribution Networks
(CDNs), most notably that run by Akamai, also improve per-
formance by the source pushing information into caches

within the network, rather than delivering information end-to-
end.

All of the performance improvements described above re-
sult from localized implementations improving the efficiency
with which communication resources are used. This distinc-
tion between efficiency and performance is important when
we consider the implementation of “Quality of Service”, in
particular the assurance of delay requirements. Traffic tends
to experience appreciable delay through a network when it
passes through points of congestion, where traffic is buffered
until it can be forwarded (rather than being discarded). The
localized technique for ensuring delay requirements (exem-
plified by ATM and the Integrated Services protocols of the
Internet, e.g. RSVP) is for endpoints to reserve resources
within the network before communication, so nodes within
the network know which traffic should be served first to meet
its delay requirements, and which traffic can be delayed.
This technique is necessary when the network can be over-
loaded by delay-constrained traffic, since excess traffic of
this type must be “blocked”. The end-to-end technique for
ensuring delay requirements (exemplified by the Differenti-
ated Services protocols of the Internet) is for endpoints to
label their traffic to indicate its delay requirements, and for
nodes within the network to use this information to decide the
service order. This technique cannot prevent delay-
constrained traffic from congesting the network, but when
this traffic occupies only a fraction of the network capacity
(as is common in modern fixed infrastructure networks which
are dominated by data rather than voice and video traffic),
then it can assure the delay-constrained traffic priority over
the other traffic. That is, the localized approach is suitable
when efficiency is needed because the load of delay-
constrained traffic approaches the network capacity, whereas
the end-to-end approach is suitable when this is not the case.

If communicating endpoints are not available simultane-
ously, then communication may progress faster if the end-
points can communicate with an intermediary, rather than
directly communicate end-to-end. For example, sending
email allows asynchronous communication, avoiding the
problems of telephone tag. Generally, a client sends email to
their server using a reliable transfer protocol such as TCP,
their server then forwards the email to the destination’s server
(again using TCP), and the destination client eventually trans-
fers the mail from their server (again using TCP) in order to
read it. The servers may still drop the mail, so an end-to-end
acknowledgement (e.g. between humans) may still be needed,
but the localized error control between servers allows the
mail to be transferred rapidly even when the endpoints are not
available simultaneously.

The final performance benefit of localized implementations
stems from sharing and economies of scale. An extreme ex-
ample of this is the function of multiplexing and switching: A
network could be constructed as a broadcast medium, and
with only the endpoints involved in multiplexing. However,
such a network would be inefficient since unicast traffic
would be distributed to many endpoints that had no need to
receive it. It is more efficient (in terms of communication

capacity) for intermediaries (routers) to participate in the
switching and route traffic only to the endpoints that need it.

The economies of scale from sharing also extend into end-
systems. For example, multiple applications (endpoints)
sharing a security function will not need to duplicate func-
tions such as key management and random number genera-
tion. The paper gives another example: An end-to-end im-
plementation of reliable transfer “may increase overall cost,
since … each application must now provide its own reliabil-
ity enhancement” [1, p. 281]. The end-to-end argument
against sharing is that it is fairer if the user pays (§ E).

Performance benefits of end-to-end implementations
Having considered the performance benefits of localized im-
plementations, we now consider the performance benefits of
end-to-end implementations.

The principle performance benefit of end-to-end implemen-
tations is that such implementations tend to reduce the
amount of processing required in the network, allowing the
network to operate at higher speed when processing is the
bottleneck (as is currently common with optical transmission
technology). While the end-to-end arguments do not require
that the network offer limited functionality and be simple
[14], simple or “stupid” networks [15] are often a conse-
quence of applying end-to-end arguments. Simple networks
are more scalable than complicated networks (since there is
less processing to extend as the network expands), and this is
an important contributor to the recent success of peer-to-peer
networking (e.g. Gnutella and Napster). However, it is im-
portant to note that some techniques for improving scalability
such as NAT (for address scaling), and caching require more
processing within the network, and are contrary to the end-to-
end arguments.

A second performance benefit of simple networks (which
follow end-to-end arguments) are that they are easier to de-
sign and change, and this short design turnaround time allows
them to track improvements in implementation technologies.
The network will also not duplicate a function (and the costs
of implementing that function) that is implemented end-to-
end for reasons of correctness, or because the endpoint design
was unaware of the function being available in the network
(e.g. because the endpoint was designed to be portable, or
because the network description was too complicated).

Finally, end-to-end functions need only be encountered
once (at the endpoints), whereas localized functions may be
encountered multiple times, e.g. once for each hop that the
traffic takes through the network. This repeated processing
can also degrade performance. For example, when bridges
operate in a store-and-forward mode, only forwarding packets
that were received without errors, then each packet will be
delayed by at least its transmission time in each bridge. If
instead, the bridges allow erroneous packets to pass, then
they can start forwarding them as soon as they enter the
bridge, and the decision to discard (and the consequent delay)
will only be made at the destination endpoint. Several
bridges offer adaptive forwarding to merge the benefits of
end-to-end and local implementation: They check the integ-
rity of incoming frames, and when frames have a low error

rate, they forward frames directly, in a cut-through manner,
without buffering, leading to low delay, whereas if the error
rate increases, they store-and-forward the frames, preventing
erroneous frames from propagating.

Given that end-to-end implementations can both benefit
and hinder performance, it is not possible to generalize the
performance implications of end-to-end implementations.

E. Additional end-to-end arguments
While The Paper often refers to the singular “end-to-end ar-
gument” concerning correctness of function, and this is the
most famous end-to-end argument, there are also other end-
to-end arguments. This section reviews these arguments,
relating to appropriate service, network transparency, ease of
deployment, and decentralism.

A corollary of the correctness argument is that if a function
is implemented end-to-end for reasons of correctness, then
any local implementation may be redundant because it has
already been implemented. A second end-to-end argument is
that local implementations may be redundant because certain
applications never need the function to be implemented, any-
where. This end-to-end argument states that a function or
service should be carried out within a network layer only if
all clients of that layer need it. (The authors of The Paper
include this aspect in their definition of “the end-to-end prin-
ciple” (italics added) in [4].) Generally, the end-system has
better knowledge than the network of what type of service it
needs, and has more information to provide the service. For
example, this argues against the inclusion of error control
(either error protection, detection or correction) within the
network, since applications such as uncompressed voice do
not need high integrity, and are sensitive to the delays that
error recovery can introduce. This also argues that endpoints
should implement compression since they know the type of
information being transferred, and so can apply an appropri-
ate compression technique.

Another expression of this end-to-end argument is that end-
to-end implementations lead to a “user pays” system. In con-
trast, functions provided in the network add a cost that is
borne by all users, irrespective of whether they use the func-
tion. A counterargument is that the total price paid by all
users may be lower than the user-pays system, since the im-
plementations can be shared as described in § D.

A corollary of this argument is that end-to-end implemen-
tations lead to a network that is more flexible, since it does
not incorporate features that are required by specific applica-
tions. For example, loading coils were introduced into te-
lephony cabling to improve the quality of voice calls, but
now interfere with the provision of data services over that
cabling [16]. Features designed into the network leave as a
legacy not just themselves, but also other applications that
come to be designed to assume that the feature will exist in
the network [15], and this installed base of applications cre-
ates inertia that makes it difficult to change the network. As
the authors of The Paper later wrote [4], the key to network
flexibility “is the idea that a lower layer of a system should
support the widest possible variety of services and functions,
so as to permit applications that cannot be anticipated.” The

difficulty arises in determining which network functions sup-
port the widest variety of services and functions when the
future services and functions are unknown. The end-to-end
arguments lead to a minimalist approach, making the network
flexible by virtue of the fact that it doesn’t contain any func-
tionality that might interfere with new services. However,
new services, such as active networking, might need new
functionality within the network. When the authors of The
Paper revisited the end-to-end arguments in the context of
active networks [4], they pointed out the tradeoff between
flexibility, and another end-to-end argument: that end-to-end
implementations allow the network to be simpler, and more
transparent, and hence easier to describe, model, and predict.
This is particularly important when networks scale, as the
number and complexity of potential interactions between
endpoints rises.

Allowing endpoints to implement services that are appro-
priate to their needs (e.g. web browser plug-ins) also aids the
deployment of new services, since it can proceed without the
protracted process of changing the network. Consequently,
services implemented at endpoints in the Internet (e.g.
streaming media) have progressed much faster than both
those implemented in the core of the Internet (e.g. the Multi-
cast Backbone) and new services introduced by the telephone
industry. Endpoint implementations allow a service to be
trialed by a minority of people who like to be on the cutting
edge of technology, or have particular need for the service,
and then for the service to spread from this installed base. In
contrast, in order for a service to be installed within the net-
work, it needs to already have an appreciable customer base;
something that hard to produce because of network external-
ities (also known as Metcalfe’s law) [17]. Implementing ser-
vices within the network relies on the foresight of the net-
work provider, whereas the fate of services implemented at
endpoints is more market driven.

Finally, the end-to-end arguments are popular with advo-
cates of decentralism (e.g. see [18]), since both views ques-
tion the ability of a central control to predict what will be
important in the future.

III. RESPONSIBILITY AND TRUST

In this section, we consider how responsibility and trust in-
fluence the end-to-end arguments. We start by considering
the function of reliable transfer, and then extend to the other
functions of security, routing, and congestion control.

Section II.B explained why integrity checks can never be
complete, and § II.C discussed how applications are often
satisfied with transport layer error control, even though it is
not truly end-to-end, because they trust the end-system. In
the case of integrity checks, the endpoint has an interest in the
application of the service, and so takes responsibility for en-
suring that the service meets its requirements, supplementing
the network’s service if necessary. If the endpoint could trust
the service of the network, then it would not need to supple-
ment the network’s service. Trust of the network is not a
characteristic of current Internet protocols, since they origi-
nated in a military environment [9] and grew in a research
and development environment, where network components

often fail, are compromised, or perform erratically. However,
the Internet is now becoming a mature operational commer-
cial environment, and this need for end-to-end checks may be
weakened. Furthermore, while end-to-end checks may help
detect that a component is misbehaving, they often lack the
selectivity of localized checks needed to determine which
component is misbehaving and should be replaced.

Security is another service where the endpoint may be in-
terested in the service, and so may implement that service.
However, there are also cases in which the endpoint is not
responsible for ensuring security. For example, military sys-
tems often seek the performance offered by the technological
advances in “Commercial Off The Shelf” end-systems, but
also need assurances that these COTS systems will not di-
vulge secret information. A common approach is to imple-
ment encryption at the link level (e.g. see [19]) so that the
endpoints can use COTS technology that need not be proven
to be trustworthy, while still maintaining security. Thus, the
value of end-to-end implementation of security depends on
which entity is responsible for security.

Routing is another function that may be implemented either
at the endpoints (“source routing”) or within the network
(“transparent routing”). It is instructive to consider why
source routing (which the authors of The Paper supported
[20]) has now generally fallen from favor in preference for
transparent routing. The main reason for route computation
within the network is that we now consider the network to be
responsible for routing information to its destination(s). A
second reason is that routing within the network may be more
responsive to link failures or congestion that is localized
within the network, and may be better able to provide a hier-
archy to handle the complexity of the Internet.

The final function that we will consider is congestion con-
trol. Congestion can occur in networks when the offered load
exceeds the capacity of the network. Congestion control in-
volves predicting or detecting congestion, and responding by
reducing the offered load. In today’s Internet, congestion
control is primarily implemented in end-systems: Most traffic
is carried by TCP, which employs a Slow Start algorithm [21]
to try to avoid congestion, uses the rate of acknowledgement
return to estimate the permissible transmission rate, and in-
terprets packet loss as indicating congestion that requires that
the source throttle its transmissions. The only network sup-
port is some Random Early Discard devices that reinforce
TCP’s behavior by signaling the onset of congestion by dis-
carding packets. However, congestion control is not amena-
ble to end-to-end implementation for the following reasons:
First, like routing, congestion is a phenomenon of the net-
work, and since multiple endpoints share the network, it is the
network that is responsible for isolating endpoints that offer
excessive traffic so that they do not interfere with the ability
of the network to provide its service to other endpoints. Sec-
ond, it is naive in today’s commercial Internet to expect end-
points to act altruistically, sacrificing the performance that
they receive from the network in order to help the network
limit congestion. The end-to-end arguments that enable the
success of peer-to-peer applications also allow the rapid pro-
liferation of applications that do not behave in a “TCP

friendly” manner. It is cavalier to allow the commercially
valuable Internet to be susceptible to such risks. The re-
quirement that the transport layer implement congestion con-
trol also prevents the use of active networking to make trans-
port layers configurable [22]. Summarizing these first two
reasons: even though the network is responsible for control-
ling congestion, it has no reason to trust that endpoints will
cooperate in controlling congestion.

A third argument against endpoint implementation of con-
gestion control is that it is inappropriate for certain networks,
leading to an unnecessary performance penalty. For example,
Slow Start unnecessarily impedes sources that are transmit-
ting on optical circuits (which don’t congest), Media Access
Control protocols already provide congestion control for traf-
fic that is local to a LAN, and the assumption that packet loss
indicates congestion is invalid for wireless networks in which
appreciable loss may also occur due to noise. Fourth, the
transport layer lacks the innate ability to detect that conges-
tion is imminent; it can only detect the possible presence of
congestion, e.g. through observing packet loss. Schemes
such as RED may signal imminent congestion, but they do so
by unnecessarily discarding traffic for which the network has
already spent resources partially delivering. Fifth, endpoints
that implement congestion control separately must independ-
ently re-learn the network state, leading to excessively cau-
tious behavior. Finally, while the endpoint may know how it
would like to adapt to congestion, it is the network that
knows when and where adaptation is needed [23], and should
be responsible for ensuring that adaptation occurs.

Thus, congestion control is one function that is not well
suited to end-to-end implementation.

IV. CONCLUSION

The end-to-end arguments are a valuable guide for placing
functionality in a communication system. End-to-end im-
plementations are supported by the need for correctness of
implementation, their ability to ensure appropriate service,
and to facilitate network transparency, ease of deployment,
and decentralism. Care must be taken in identifying the end-
points, and end-to-end implementations can have a mixed
impact on performance and scalability. To determine if the
end-to-end arguments are applicable to a certain service, it is
important to consider what entity is responsible for ensuring
that service, and the extent to which that entity can trust other
entities to maintain that service. The end-to-end arguments
are insufficiently compelling to outweigh other criteria for
certain functions such as routing and congestion control. So
we must conclude by quoting The Paper: “A great deal of
information about system implementation is needed to make
this choice [of end-to-end or local implementation] intelli-
gently” [1, p. 282].

REFERENCES
[1] J. Saltzer, D. Reed and D. Clark: “End-to-end arguments

in system design”, ACM Trans. Comp. Sys., 2(4):277-88,
Nov. 1984

[2] L. Peterson and B. Davie: Computer Networks: A Sys-
tems Approach. Morgan Kaufmann, 1996

[3] B. Carpenter: “Architectural principles of the Internet”,
IETF, RFC 1958, Jun. 1996

[4] D. Reed, J. Saltzer and D. Clark: “Active networking
and end-to-end arguments”, IEEE Net. Mag., 12(3):69-
71, May/Jun. 1998

[5] D. Reed: "The end of the end-to-end argument",
http://www.reed.com/Papers/endofendtoend.html, 2000

[6] D. Clark and M. S. Blumenthal: “Rethinking the design
of the Internet: The end to end arguments vs. the brave
new world”; Workshop on The Policy Implications of
End-to-End, Dec. 2000

[7] S. Lin and D. Costello, Jr.: Error Control Coding: Fun-
damentals and Applications, Prentice-Hall, 1983

[8] J. Stone and C. Partridge: “When the CRC and TCP
checksum disagree”, Proc. SIGCOMM, 2000

[9] D. Clark: “The design philosophy of the DARPA Inter-
net protocols”, Proc. SIGCOMM '88, pp. 106-14, Aug.
1988

[10] V. Jacobson: “Compressing TCP/IP headers for low-
speed serial links”, IETF, RFC 1144, Feb. 1990

[11] T. Moors: “Protocol Organs: Modularity should reflect
function, not timing”, Proc. OPENARCH 98, pp. 91-
100, Apr. 1998

[12] B. Lampson: “Hints for computer system design”, ACM
Operating Systems Review, 15(5):33-48, Oct. 1983

[13] D. Pradhan: Fault-Tolerant Computer System Design;
Prentice Hall, 1996

[14] D. Reed: email to the end-to-end mailing list, May 23,
2001

[15] D. Isenberg: “The rise of the stupid network”; Computer
Telephony, Aug. 1997, pp. 16-26.

[16] R. Lucky: “When is dumb smart?”, IEEE Spectrum,
34(11):21, Nov. 1997

[17] S. Liebowitz and S. Margolis: “Network externality”,
The New Palgraves Dictionary of Economics and the
Law, MacMillan, 1998

[18] N. Negroponte: “The future of phone companies”,
Wired, 4(9), Sep. 1996

[19] M. Anderson, C. North, J. Griffin, R. Milner, J. Yesberg,
K. Yiu: “Starlight: Interactive link”; Proc. 12th Annual
Comp. Security Applications Conf., pp. 55-63; 1996

[20] J. H. Saltzer, D. P. Reed, D. D. Clark: “Source routing
for campus-wide Internet transport”, Proc. IFIP WG 6.4
Int’l Workshop on Local Networks, pp. 1-23, Aug. 1980

[21] V. Jacobson: “Congestion avoidance and control”; Proc.
SIGCOMM '88; pp. 314-29, Aug.1988

[22] C. Partridge, W. Strayer, B. Schwartz, and A. Jackson,
“Commentaries on `Active Networking and End-to-End
Arguments'”, IEEE Network, 12(3), May/June 1998.

[23] S. Bhattacharjee, K. Calvert and E. Zegura: “Active
networking and the end-to-end argument”, Proc. Int’l
Conf. on Network Protocols, 1997

