Dynamic Programming

» Sequence of decisions.
* Problem state.
« Principle of optimality.

&

‘}ﬁ]

Seguence Of Decisions

» Asinthe greedy method, the solution to a
problem isviewed as the result of a
sequence of decisions.

« Unlike the greedy method, decisions are not
made in a greedy and binding manner.

0/1 Knapsack Problem R

(section 15.2.1, p.715 of Text)

Letx;= 1whenitemiis slected and let x;= 0
when item i is not seleded.

n
maximize_i1 P X
| =

n
subject to ,21 wiXsC
| =

andx;=0or 1forali
All profits and weights are positive.

Sequence Of Decisions ¢

Decide the x; valuesin the order x;, X,, X, ..., X,
Decide the x; valuesin the order X, X1, Xn.p, ---» X;
Decide the x; valuesin the order x;, X, X, X1, ---
 Or any other order.

Problem State

 The state of the 0/1 knapsack problem is given by
= the weights and profits of the avail able items
= the cgadty of the knapsack
* When adedsion on one of the x; values is made,
the problem state changes.
= itemi isno longer avail able
= the remaining knapsack capacity may beless

Problem State

* Supposethat decisions are made in the order X, X,, X3,
ey X
e Theinitial state of the problem is described by the pair
1, 0.
= |tems 1 through n are available (the weights, profitsand n are
implicit).
= The available knapsad capadty isc.
 Followingthefirst dedsion the state becomes one of the
following:
* (2,¢) ... whenthedecisionisto set x,= 0.
= (2,c-w,) ... when the decisionisto set x,= 1.

Principle of Optimality

« An optimal solution satisfies the following
property:
= No matter what the first decisionis, the remaining
decisions are optimal with respect to the state that
results from this decision.
* Dynamic programming may be used only when
the principle of optimality holds. &

0/1 Knapsack Problem |]

Suppose that decisions are made in the order x,,
Xoy Xgy «evy Xpe

Let X,;= 8y, X,= @&, X3= &, ..., X,= g, be a
optimal solution.

If &, = 0, then following the first decision the state
is(2,0).

&, 8, ..., 8, must be an optimal solutionto the
knapsad instance given by the state (2,c).

X, =8,=0 |

n
maximize 2—_ Pi X

n
subject to 22 WX s C
| =
andx;=0or 1forali

* If not, this instance has a better solution b,, b,
.., by

n n
S pb > 2 P&
i=2 =2

* X,=ay, X,= by, Xg= by, ..., X, = b, isabetter
solution to the original instance than is
X1= 8y, Xo= @, X3= g, ...y X, = &,

* SO X;= &y, X,= &, X3= &, ..., X, = &, cannot
be an optimal solution ... a cntradiction
with the assumption that it is optimal.

X, =q=1 [

* Next, consider the case a, = 1. Following the
first decisionthe state is (2, c-w,).

* &, 8, ..., & Must bean optimal solution to the
knapsadk instance given by the state (2, ¢ -w,).

X, =q=1 |

n
maximize 2—_ Pi X

n
subject to 22 WX < (C-wy)
| =
andx;=0or 1forali

* If not, this instance has a better solution b,, b,
.., by

n n
S pb > 2 P&
i=2 =2

* Xy= &y, X,= 0y, X3= by, ..., X, = b, isabetter
solution to the original instance than is
X1= 8y, Xo= 8gy X3= 8g, -+, Xn = &y

* SOX;= &, X,= 8y, X3= &, ..., X, = &, cannot be an
optimal solution ... a contradiction with the
asumption that it is optimal.

0/1 Knapsack Problem -

» Therefore, no matter what the first dedsion is, the
remaining dedsions are optimal with respect to
the state that results from this dedsion.

* The principle of optimality holds and dynamic
programming may be gplied.

Dynamic Programming Reaurrence

» Letf(i,y) bethe profit value of the optimal solution to
the knapsadk instance defined by the state (i,y).
= |temsi throughn are available.
= Available @padty isy.
* For the time being assuume that we wish to determine
only the value of the best solution.
= Later we will worry about determining the x;sthat yield this
maximum value.
* Under this assumption, our task isto determine f(1,c).

Dynamic Programming Reaurrence

« f(n,y) isthe value of the optimal solution to the
knapsadk instance defined by the state (n,y).
= Only item nisavailable.
= Available apadty isy.

o Ifw, <y, f(ny) =p,
e Ifw,>y, f(ny)=0.

Dynamic Programming Reaurrence

e Supposethati<n.
« f(i,y) isthe value of the optimal solution to the
knapsadk instance defined by the state (i,y).
= |[temsi through n are avalable.
= Available @padty isy.
 Suppose that in the optimal solution for the state
(i,y), thefirst decisionisto set x;= 0.
» From the principle of optimality (we have
shown that this principle holds for the knapsack
problem), it follows that f(i,y) = f(i+1,y).

Dynamic Programming Reaurrence

» Theonly other passbility for the first decision
isx=1.
» Thecasex;=1canariseonly wheny = w;,.
« From the principle of optimality, it foll ows that
f(iy) = f(i+Ly-w)) + p;.
« Combining the two cases, we get
= f(i,y) =f(i+1y) whenevery < w;.
» f(i,y) = max{f(i+1y), f(i+Ly-w)) + p}.y 2w,

Recursive Code

[** @return f(i,y) */
private static int f(int i, int y)
{
if (i ==n) return (y <w[n]) ?0: p[n];
if (y <wl[i]) returnf(i +1,y);
return Math.max(f(i + 1, y),
f(i + 1,y - wli]) + p[i]);

Recursion Tree
f(1,c)

f(2,) f(2,cw,)

f(3) f(3,c-w,) f(3,c-wy) f(3,c-W, —w,)

/N /N /N N

f(4.c) f(4,c-wy) f(4,c-W,) f(4,c-w, —wy)

f(5/)\ /N /N /\/\/\ VAN
f(5,c-wy ~w3—w,)

Time Complexity
Let t(n) be the time required when nitemsare
available.
t(0) =t(1) = a, where ais a constant.
Whent>1,
t(n) < 2t(n-1) + b,
whereb isa onstant.
t(n) = O(2").

Solving dynamic programming recurrences A
recursively can be hazardous to runtime.

€ ReducingRun Time

f(1,c)

f(2.c), f(2,cw,)
f(3ic) f(3,c-wy) f(3,c-w,) f(3,c-w; —w,)
AN VN
f(4.c) f(4,c-wy) f(4,c-W,) f(4,c-w, —wy)

/N /N /\/\/\ VAN

f(5,c)
f(5,c-wy ~wz3—w,)

Time Complexity

3
—

Level i of the recursion treehas up to 21 nodes.

¢ At each such node an f(i,y) is computed.

 Severa nodes may compute the same f(i,y).

» We can save time by not recomputing already
computed f(i,y)s.

« Save omputed f(i,y)sin adictionary.

= Keyis(i, y) vaue.

= f(i, y) is computed recursively only when (i,y) isnaot in
the dictionary.

= Otherwise, the dictionary valueis used.

Integer Weights

» Asaume that each weight is an integer.

* The knapsack capadty ¢ may aso be assumed

to be an integer.

Only f(i,y)swithl<i<nandO<y< careof

interest.

« Eventhoughlevel i of the recursion treehas up
to 21 nodes, at most c+1 represent diff erent
f(i,y)s.

Integer Weights Dictionary

» Use a array fArray[][] asthe dictionary.

o fArray[1:n][O:C]

o fArray[i][y] = -1iff f(i,y) not yet computed.

 Thisinitidization is done before the recursive method
isinvoked.

» Theinitidizaion takes O(cn) time.

No Remmputation Code .

private static int f(int i, int y)
{
if (FArray[i][y] = 0) return fArray[i][Y];
if (i ==n) {fArray[i][y] = (y <w[n]) ?0: p[n];
return fArray[i][y];}
if (y <wili]) fArray[illy] = f(i + 1, y);
elsefArray[i][y] = Math.max(f(i + 1, y),
f(i + 1,y - wli]) + p[i]);
return fArray[i][y];

Time Complexity

« t(n) = O(cn). o
* Goodwhen cnissmall relative to 2.
« n=3,c=1010101

w = [100102, 1000321, 6327]

p = [102, 505, 5]
e =g
« cn=3030303

