
Dynamic Programming

• Sequence of decisions.

• Problem state.

• Principle of optimality.

Sequence Of Decisions

• As in the greedy method, the solution to a
problem is viewed as the result of a
sequence of decisions.

• Unlike the greedy method, decisions are not
made in a greedy and binding manner.

0/1 Knapsack Problem
(section 15.2.1, p.715 of Text)

Let xi = 1 when item i is selected and let xi = 0
when item i is not selected.

i = 1

n
pi ximaximize

i = 1

n
wi xi ≤ csubject to

and xi = 0 or 1 for all i

All profits and weights are positive.

Sequence Of Decisions

• Decide the xi values in the order x1, x2, x3, …, xn

• Decide the xi values in the order xn, xn-1, xn-2, …, x1

• Decide the xi values in the order x1, xn, x2, xn-1, …

• Or any other order.

Problem State

• The state of the 0/1 knapsack problem is given by
� the weights and profits of the available items
� the capacity of the knapsack

• When a decision on one of the xi values is made,
the problem state changes.

� item i is no longer available
� the remaining knapsack capacity may be less

Problem State
• Suppose that decisions are made in the order x1, x2, x3,

…, xn.

• The initial state of the problem is described by the pair
(1, c).

� Items 1 through n are available (the weights, profits and n are
implicit).

� The available knapsack capacity is c.

• Following the first decision the state becomes one of the
following:

� (2, c) … when the decision is to set x1= 0.
� (2, c-w1) … when the decision is to set x1= 1.

Principle of Optimali ty

• An optimal solution satisfies the following
property:

� No matter what the first decision is, the remaining
decisions are optimal with respect to the state that
results from this decision.

• Dynamic programming may be used only when

 the principle of optimality holds.

0/1 Knapsack Problem

• Suppose that decisions are made in the order x1,
x2, x3, …, xn.

• Let x1= a1, x2 = a2, x3 = a3, …, xn = an be an
optimal solution.

• If a1 = 0, then following the first decision the state
is (2, c).

• a2, a3, …, an must be an optimal solution to the
knapsack instance given by the state (2,c).

x1 = a1 = 0

• If not, this instance has a better solution b2, b3,
…, bn.

i = 2

n
pi ximaximize

i = 2

n
wi xi ≤ csubject to

and xi = 0 or 1 for all i

i = 2

n
pi bi >

i = 2

n
pi ai

x1 = a1 = 0

• x1= a1, x2 = b2, x3 = b3, …, xn = bn is a better
solution to the original instance than is
x1= a1, x2 = a2, x3 = a3, …, xn = an.

• So x1= a1, x2 = a2, x3 = a3, …, xn = an cannot
be an optimal solution … a contradiction
with the assumption that it is optimal.

x1 = a1 = 1

• Next, consider the case a1 = 1. Following the
first decision the state is (2, c-w1).

• a2, a3, …, an must be an optimal solution to the
knapsack instance given by the state (2, c -w1).

x1 = a1 = 1

• If not, this instance has a better solution b2, b3,
…, bn.

i = 2

n
pi ximaximize

i = 2

n
wi xi ≤ (c- w1)subject to

and xi = 0 or 1 for all i

i = 2

n
pi bi >

i = 2

n
pi ai

x1 = a1 = 1

• x1= a1, x2 = b2, x3 = b3, …, xn = bn is a better
solution to the original instance than is
x1= a1, x2 = a2, x3 = a3, …, xn = an.

• So x1= a1, x2 = a2, x3 = a3, …, xn = an cannot be an
optimal solution … a contradiction with the
assumption that it is optimal.

0/1 Knapsack Problem

• Therefore, no matter what the first decision is, the
remaining decisions are optimal with respect to
the state that results from this decision.

• The principle of optimality holds and dynamic
programming may be applied.

Dynamic Programming Recurrence

• Let f(i,y) be the profit value of the optimal solution to
the knapsack instance defined by the state (i,y).

� Items i through n are available.
� Available capacity is y.

• For the time being assume that we wish to determine
only the value of the best solution.

� Later we will worry about determining the xis that yield this
maximum value.

• Under this assumption, our task is to determine f(1,c).

Dynamic Programming Recurrence

• f(n,y) is the value of the optimal solution to the
knapsack instance defined by the state (n,y).

� Only item n is available.
� Available capacity is y.

• If wn ≤ y, f(n,y) = pn.

• If wn > y, f(n,y) = 0.

Dynamic Programming Recurrence

• Suppose that i < n.
• f(i,y) is the value of the optimal solution to the

knapsack instance defined by the state (i,y).
� Items i through n are available.
� Available capacity is y.

• Suppose that in the optimal solution for the state
(i,y), the first decision is to set xi= 0.

• From the principle of optimality (we have
shown that this principle holds for the knapsack
problem), it follows that f(i,y) = f(i+1,y).

Dynamic Programming Recurrence

• The only other possibilit y for the first decision
is xi= 1.

• The case xi= 1 can arise only when y ≥ wi.

• From the principle of optimality, it follows that
f(i,y) = f(i+1,y-wi) + pi.

• Combining the two cases, we get
� f(i,y) = f(i+1,y) whenever y < wi.
� f(i,y) = max{ f(i+1,y), f(i+1,y-wi) + pi} , y ≥ wi.

Recursive Code

/* * @return f(i,y) * /

private static int f(int i, int y)

{

 if (i == n) return (y < w[n]) ? 0 : p[n];

 if (y < w[i]) return f(i + 1, y);

 return Math.max(f(i + 1, y),

 f(i + 1, y - w[i]) + p[i]);

}

Recursion Tree

f(1,c)

f(2,c) f(2,c-w1)

f(3,c) f(3,c-w2) f(3,c-w1) f(3,c-w1 –w2)

f(4,c) f(4,c-w3) f(4,c-w2)

f(5,c)

f(4,c-w1 –w3)

f(5,c-w1 –w3 –w4)

Time Complexity
• Let t(n) be the time required when n items are

available.

• t(0) = t(1) = a, where a is a constant.

• When t > 1,

t(n) ≤ 2t(n-1) + b,

where b is a constant.

• t(n) = O(2n).

Solving dynamic programming recurrences
recursively can be hazardous to run time.

Reducing Run Time

f(1,c)

f(2,c) f(2,c-w1)

f(3,c) f(3,c-w2) f(3,c-w1) f(3,c-w1 –w2)

f(4,c) f(4,c-w3) f(4,c-w2)

f(5,c)

f(4,c-w1 –w3)

f(5,c-w1 –w3 –w4)

Time Complexity

• Level i of the recursion tree has up to 2i-1 nodes.
• At each such node an f(i,y) is computed.
• Several nodes may compute the same f(i,y).
• We can save time by not recomputing already

computed f(i,y)s.
• Save computed f(i,y)s in a dictionary.

� Key is (i, y) value.
� f(i, y) is computed recursively only when (i,y) is not in

the dictionary.
� Otherwise, the dictionary value is used.

Integer Weights

• Assume that each weight is an integer.

• The knapsack capacity c may also be assumed
to be an integer.

• Only f(i,y)s with 1 ≤ i ≤ n and 0 ≤ y ≤ c are of
interest.

• Even though level i of the recursion tree has up
to 2i-1 nodes, at most c+1 represent different
f(i,y)s.

 Integer Weights Dictionary

• Use an array fArray[] [] as the dictionary.
• fArray[1:n][0:c]
• fArray[i][y] = -1 iff f(i,y) not yet computed.
• This initialization is done before the recursive method

is invoked.
• The initialization takes O(cn) time.

No Recomputation Code

private static int f(int i, int y)

{

 if (fArray[i][y] ≥ 0) return fArray[i][y];

 if (i == n) { fArray[i][y] = (y < w[n]) ? 0 : p[n];

 return fArray[i][y];}

 if (y < w[i]) fArray[i][y] = f(i + 1, y);

 else fArray[i][y] = Math.max(f(i + 1, y),

 f(i + 1, y - w[i]) + p[i]);

 return fArray[i][y];

}

Time Complexity
• t(n) = O(cn).

• Good when cn is small relative to 2n.

• n = 3, c = 1010101

 w = [100102, 1000321, 6327]

 p = [102, 505, 5]

• 2n = 8

• cn = 3030303

