Dynamic programming

Dynamic programming
• is used for optimisation problems, where we want to find the ‘best way’ of doing something;
• is a recursive approach that involves breaking a global problem down into more local subproblems;
• assumes optimal substructure i.e. that there is a simple way to combine optimal solutions of subproblems to get an optimal global solution;
• avoids the inefficiency that straightforward recursion may suffer from subproblem overlap (i.e. when decomposition results in the same subproblems occurring often and being solved many times) by:
 • memoizing (i.e. storing the solutions of subproblems in a table and then looking them up) and:
 • computing the table bottom up rather than top down.
Dynamic programming often produces a polynomial-time algorithm for finding the optimal solution when brute force enumeration of possibilities would be exponential.

The recursive definition of \(V[k, w] \)

The recursive definition of \(V[k, w] \) says that the value of a solution for stage \(S_k \) and target weight \(w \) either

• includes item \(s_k \) in which case it is \(v_k \) plus a subproblem solution for \(S_{k+1} \) and total weight \(w-w_k \), or
• doesn’t include \(s_k \) in which case it is just a subproblem solution for \(S_{k+1} \) and the same weight \(w \).

The thief can solve the problem by considering the total set \(S_n \) and weight \(W \) deriving its solution from that of the subproblems \(S_{n-1} \) and weight \(W-w_n \) or \(S_{n-1} \) and weight \(W \). These subproblems in turn ...

At each stage \(S_k \), there are two choices to be compared and the better one made:

1. If the thief picks item \(s_k \) then she gets the value \(v_k \) and can choose from items \(s_1, \ldots, s_{k-1} \) up to the weight limit \(w-w_k \), getting additional value \(V[k-1, w-w_k] \), for a total value \(v_k + V[k-1, w-w_k] \).
2. If the thief decides not to take item \(s_k \) then she can choose from items \(s_1, \ldots, s_{k-1} \) up to the weight limit \(w \), and get the value \(V[k-1, w] \).

Solving the 0-1 knapsack problem

Given: a set \(S = \{s_1, s_2, \ldots, s_n\} \) of \(n \) items where each \(s_i \) has integer value \(v_i \) and integer weight \(w_i \).

Required: to choose a subset \(O \) of \(S \) such that the total weight of the items chosen does not exceed \(W \) and the sum of the values \(v_i \) of items in \(O \) is maximal.

How can we break the global problem down into subproblems in a way that gives subproblem optimality?

Suppose the optimal solution for \(S \) and \(W \) is a subset \(O \) in which \(s_k \) is the highest numbered item.

Then \(O - \{s_k\} \) is an optimal solution for \(S_{k+1} = \{s_1, \ldots, s_{k-1}\} \) and total weight \(W - w_k \). And the value of the global solution \(O \) is \(v_k \) plus the value of the subproblem solution.

Given a target weight \(w \) and a set \(S_k = \{s_1, \ldots, s_k\} \) imagine examining all the subsets of \(S_k \) whose total weight is \(\leq w \). Some of these subsets might have bigger total values than others. Let \(V[k, w] \) be the biggest total value of such a subset of \(S_k \). Now we give a recursive definition of \(V[k, w] \).

\[
V[k, w] = \begin{cases}
0 & \text{if either } k = 0 \text{ or } w = 0, \text{otherwise} \\
V[k-1, w] & \text{if } w_k > w \text{ then } V[k-1, w] \\
\text{else max} \{V[k-1, w], v_k + V[k-1, w-w_k]\} & \text{otherwise}
\end{cases}
\]

Using a table

Inputs = max weight \(W \), item values \((v_1, v_2, \ldots, v_n) \) and weights \((w_1, w_2, \ldots, w_n) \).

We can solve the problem by recursively computing \(V[k, w] \). But to avoid subproblem overlap dynamic programming uses a bottom-up table —

The values \(V[k, w] \) are stored in a table \(V[0..n, 0..W] \) whose entries are computed in row-major order (i.e. the first row of \(V \) is filled in from left to right, then the second row, and so on). This bottom-up approach ensures that subproblems are solved only once.

At the end of the computation, \(V[n, W] \) contains the maximum value the thief can take.

Tracing the choices — the subset of items to take can be recovered from the table \(V \) by starting at \(V[n, W] \) and tracing where the optimal values came from.

If \(V[k, w] = V[k-1, w] \) then item \(s_k \) is not part of the solution and we continue tracing with \(V[k-1, w] \). Otherwise item \(s_k \) is part of the solution and we continue tracing with \(V[k-1, w-w_k] \).
Pseudocode

Dynamic_01_knapsack\((n, W, v_1, \ldots, v_n, w_1, \ldots, w_n)\)

1. for \(w\) from 0 to \(W\), set \(V[0, w] = 0\)
2. for \(k\) from 1 to \(n\)
3. set \(V[k, 0] = 0\)
4. for \(w\) from 1 to \(W\)
5. if \(w_k > w\)
6. then set \(V[k, w] = V[k-1, w]\)
7. else
8. if \(V[k-1, w] > v_k + V[k-1, w - w_k]\)
9. then set \(V[k, w] = V[k-1, w]\)
10. else set \(V[k, w] = v_k + V[k-1, w - w_k]\)

The algorithm describes how the table is filled in.
It doesn’t describe how to trace the choices.

Example

Apply the algorithm to solve the 0-1 knapsack problem:

\(s_1: v_1 = 60\) \(w_1 = 10\)
\(s_2: v_2 = 100\) \(w_2 = 20\)
\(s_3: v_3 = 120\) \(w_3 = 30\)

<table>
<thead>
<tr>
<th></th>
<th>(0)</th>
<th>(10)</th>
<th>(20)</th>
<th>(30)</th>
<th>(40)</th>
<th>(50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>