4/17/03 Doc 22 C# Inheritance slide # 1

CS 683 Emerging Technologies
Spring Semester, 2003
Doc 22 C# Inheritance

Contents
INNEITANCE ... 3
HIdING & NEW ...eecece e 5
POlYMOIPRISM ... e 8
OVEITIdE RUIES. ... 12
SCAICA. ... 14
ADSIraCt ClasSeS 17
Accessibility constraints...........ccoooviiiiiii 23
References

C# Language Specification,
http://download.microsoft.com/download/0/a/c/0acb3585-3f3f-
4169-ad61-efc9f0176788/CSharp.zip

Programming C#, Jesse Liberty, O'Reilly, Chapter 5

2003 SDSU & Roger Whitney, 5500 Campanile Drive, San Diego, CA 92182-7700 USA.
OpenContent (http://www.opencontent.org/opl.shtml) license defines the copyright on this
document.

4/17/03 Doc 22 C# Inheritance slide # 2
Constants Verses static readonly

Contants are known at compile time
Readonly vaules are not know until runtime

using System;
namespace Program1

{
public class Utils

{
public static readonly int X = 1;
¥
¥

namespace Program?2

{

class Test
{
static void Main() {
Console.WriteLine(Program1.Utils.X);

¥
¥
¥

4/17/03 Doc 22 C# Inheritance slide # 3
Inheritance
Single Inheritance

public class A
{

int value = 0;
public A(int value)

{

this.value = value;

¥
¥

class B: A
{

Int Xx;

public B(int first, int second) : base(first)
{

X = second;

h

4/17/03 Doc 22 C# Inheritance slide # 4

Class Access Modifiers

public

protected internal
protected

internal

private (default)

The class modifier limits the access of its members

class B: A
{

Int Xx;

public B(int first, int second) : base(first)
{

X = second;

h

4/17/03

class Base

{
public void F() {}

h

class Derived: Base

{
public void F() {}

h

class Base

{
public void F() {}

h

class Derived: Base

{
¥

new public void F() {}

Doc 22 C# Inheritance slide # 5

Hiding & New

// Warning, hiding an inherited name

4/17/03 Doc 22 C# Inheritance slide # 6

Some Fun
class Base

{
public static void F() {}

h

class Derived: Base

{
new private static void F() {} // Hides Base.F in Derived only

h

class MoreDerived: Derived

{
static void G() { F(); } /! Invokes Base.F

h

class Base

{
public static void F() {}

h

class Derived: Base

{
new public static void F() {}

h

class MoreDerived: Derived

{
static void G() { F(); } /I Invokes Derived.F

h

4/17/03 Doc 22 C# Inheritance slide # 7
What Gets Printed?

using System;

class Base
{
public void Foo()
{
Console.WriteLine("Base");
}
}
class Derived: Base
{
public void Foo()
{
Console.WriteLine("Derived");
}
}

class Tester

{
public static void Main()
{
Base top = new Derived();
top.Foo();
¥

4/17/03 Doc 22 C# Inheritance slide # 8
Polymorphism

Base method must be declared virtual
Derived method must be declared override

class Base
{
public virtual void Foo()
{
Console.WriteLine("Base");
}
}
class Derived: Base
{
public override void Foo()
{
Console.WriteLine("Derived");
}
}

class Tester

{
public static void Main()
{
Base top = new Derived();
top.Foo();
}

4/17/03 Doc 22 C# Inheritance slide # 9

The Rules

A method named N is invoked with an argument list A
On an instance with a compile-time type C & a run-time type R

R is either C or a class derived from C

The invocation is processed as follows:

» First, overload resolution is applied to C, N, and A, to select a
specific method M from the set of methods declared in and
inherited by C.

* Then, if M is a non-virtual method, M is invoked.

e Otherwise, M is a virtual method, and the most derived
implementation of M with respect to R is invoked.

The most derived implementation of a virtual method M with

respect to a class R is determined as follows:

* If R contains the introducing virtual declaration of M, then this
is the most derived implementation of M

* Otherwise, if R contains an override of M, then this is the
most derived implementation of M.

* Otherwise, the most derived implementation of M is the same
as that of the direct base class of R.

4/17/03 Doc 22 C# Inheritance slide # 10

Example
using System;
class A
{
public void F() { Console.WriteLine("A.F"); }
public virtual void G() { Console.WriteLine("A.G"); }

}
class B: A

{
new public void F() { Console.WriteLine("B.F"); }
public override void G() { Console.WriteLine("B.G"); }
}

class Test
{
static void Main() {
B b =new B();
A a=b;
a.F();
b.F();
a.G();
b.G();

Output
A.F
B.F
B.G
B.G

4/17/03 Doc 22 C# Inheritance slide # 11
What Happens Here?

using System;
class A

{

}
class B: A

{
// Get a compile warning, hiding inherited F()

public virtual void F() {Console.WriteLine("B");}

public virtual void F() {Console.WriteLine("A");}

}
class C: B
{
public override void F() {Console.WriteLine("C");}
}

class Tester

{
public static void Main()

{

A top = new C();
top.F();

B middle = new C();
middle.F();

h

4/17/03 Doc 22 C# Inheritance slide # 12
Override Rules

The method overridden by an override declaration is known as
the overridden base method.

For an override method M declared in a class C, the overridden
base method is determined by examining each base class of C,
starting with the direct base class of C and continuing with each
successive direct base class, until an accessible method with
the same signature as M is located.

For the purposes of locating the overridden base method, a
method is considered accessible if it is public, if it is protected, if
it is protected internal, or if it is internal and declared in the
same program as C.

A compile-time error occurs unless all of the following are true
for an override declaration:

* An overridden base method can be located as described
above.

* The overridden base method is a virtual, abstract, or override
method. In other words, the overridden base method cannot
be static or non-virtual.

* The overridden base method is not a sealed method.

* The override declaration and the overridden base method
have the same return type.

* The override declaration and the overridden base method
have the same declared accessibility. In other words, an
override declaration cannot change the accessibility of the
virtual method.

4/17/03 Doc 22 C# Inheritance slide # 13

Calling Base Method

using System;

public class A
{
virtual public void F()
{
Console.WriteLine("A");
¥
¥
class B: A
{
public override void F()
{
base.F();
Console.WriteLine("B");
¥

4/17/03 Doc 22 C# Inheritance slide # 14

Sealed

A sealed method overrides an inherited virtual method with the
same signature

using System;
class A
{
public virtual void F() {
Console.WriteLine("A.F");
¥
public virtual void G() {
Console.WriteLine("A.G");

}
}
class B: A
{
sealed override public void F() {
Console.WriteLine("B.F");
}
override public void G() {
Console.WriteLine("B.G");

¥
¥
class C: B
{
override public void G() {
Console.WriteLine("C.G");

¥
¥

C cannot override F()

4/17/03 Doc 22 C# Inheritance slide # 15

What Happens Here
using System;

class A
{
public virtual void F() {
Console.WriteLine("A.F");
}
public virtual void G() {
Console.WriteLine("A.G");

}
}
class B: A
{
sealed override public void F() {
Console.WriteLine("B.F");
}
override public void G() {
Console.WriteLine("B.G");
}
}
class C: B
{

override public void G() {
Console.WriteLine("C.G");

}

new public void F() {
Console.WriteLine("C.F");

h

4/17/03 Doc 22 C# Inheritance slide # 16
Sealed Classes

A sealed class cannot have any derived classes

A sealed class cannot have any virtual methods

using System;

sealed class A

{
public void F() {
Console.WriteLine("A.F");
}
}
class B: A //Compile Error
{

h

4/17/03 Doc 22 C# Inheritance slide # 17
Abstract Classes

An abstract method is declared with the modifier abstract

An abstract method

* |s a virtual method

* Cannot have a body

» Cannot be explicitly declared virtual

A class that contains an abstract method must be declared
abstract

An abstract class
Does not have to have abstract methods

Cannot be instantiated directly

4/17/03 Doc 22 C# Inheritance slide # 18
Example

public abstract class Shape

{
public abstract void Paint(Graphics g, Rectangle r);

)
public class Ellipse: Shape

{
public override void Paint(Graphics g, Rectangle r) {
g.DrawEllipse(r);
}
}
public class Box: Shape
{
public override void Paint(Graphics g, Rectangle r) {
g.DrawRect(r);

¥
¥

4/17/03 Doc 22 C# Inheritance slide # 19

Abstract Classes can have constructors

abstract class A

{

int cat;

abstract public void F();

public A(int value)
{

cat = value;
}

4/17/03 Doc 22 C# Inheritance slide # 20

Cannot call a base abstract method

abstract class A

{
public abstract void F();

}
class B: A

{
public override void F() {
base.F(); // Error, base.F is abstract
}
}

4/17/03 Doc 22 C# Inheritance slide # 21
Overriding with Abstract
Class B forces class C to implement F()

class A
{
public virtual void F() {
Console.WriteLine("A.F");

¥
¥

abstract class B: A
{

public abstract override void F();

h

class C: B
{
public override void F() {
Console.WriteLine("C.F");

¥
¥

4/17/03 Doc 22 C# Inheritance slide # 22
Protected access for instance members

When a protected instance member is accessed outside the
program text of the class in which it is declared, the access is
required to take place through an instance of the derived class
type in which the access occurs.

public class A
{

protected int Xx;
static void F(A a, B b) {

ax=1; //0k
bx=1; // Ok
}
}
public class B: A
{

static void F(A a, B b) {
a.x = 1; // Error, must access through instance of B
bx=1; // Ok
}
}

4/17/03 Doc 22 C# Inheritance slide # 23

Accessibility constraints

The following accessibility constraints exist:

The direct base class of a class type must be at least as
accessible as the class type itself.

The explicit base interfaces of an interface type must be at
least as accessible as the interface type itself.

The return type and parameter types of a delegate type must
be at least as accessible as the delegate type itself.

The type of a constant must be at least as accessible as the
constant itself.

The type of a field must be at least as accessible as the field
itself.

The return type and parameter types of a method must be at
least as accessible as the method itself.

The type of a property must be at least as accessible as the
property itself.

The type of an event must be at least as accessible as the
event itself.

The type and parameter types of an indexer must be at least
as accessible as the indexer itself.

The return type and parameter types of an operator must be
at least as accessible as the operator itself.

The parameter types of an instance constructor must be at
least as accessible as the instance constructor itself.

4/17/03 Doc 22 C# Inheritance slide # 24
Examples

* The direct base class of a class type must be at least as
accessible as the class type itself.

class A {}
public class B: A {} //Compile Error

* The return type and parameter types of a method must be at
least as accessible as the method itself.

class A {}

public class B

{

AFQ {}
internal A G() {}

public A H() {} //Compile Error
}

* The type of a field must be at least as accessible as the field
itself.

class A {}
public class B

{
public A sam;

h

