
CSCD 303
Essential Computer
Security
Fall 2017

Lecture 7 - Operating System
Prinicples and Design

2

Overview

• Learning Objectives
– Understand the functions of an Operating

System (OS)
– Learn about different kernel designs
– Security Principles in OS design

3

Operating System Design

 Operating systems and their design critical to
overall security

 Foundation of security
 Poor choices allow greater access to

important resources and make it much more
difficult to secure

 Also, are universal security principles should
be considered when designing any system

Operating Systems (OS)
Functions
• What do OS's do?

– Operating system's tasks, in most general
sense, fall into six categories:

– Processor management
– Memory management
– Device management
– Storage management
– Application interface
– User interface

Operating System Functions

Picture from HowStuffWorks.com

OS controls every
task of your
computer plus
access to all the
computer resources

OS Functions

• Processor Management
– Allows multiple processes to share resources of

processor fairly
– Does this by scheduling processes to get execution

time
• User Processes
• Microsoft Word, Foxfire or Skype
• System Processes:
• Print spooler, network connections, security accounts

manager ... plus many others

Scheduler
Tasks

Memory Storage
and Management
When an operating system manages
computer's memory, there are two
broad tasks to be accomplished:

 1. Each process must have enough memory in which to
execute, and respect memory boundaries

 2. Different types of memory must be used properly so that
each process can run most effectively such as

– Cache, RAM and Virtual Memory

• First task requires operating system to set up memory
boundaries for types of software and for individual
applications

Device Management

• Path between operating system and virtually all
hardware not on computer's motherboard goes
through special program called a Device Driver
– Driver's function by translating between hardware

subsystems and high-level programming languages
of operating system and application programs

Device Management

• Drivers separate from operating system so
that new functions can be added to drivers

• Plus, new drivers added
• Without requiring operating system itself to

be modified, recompiled and redistributed

Device Drivers

 Linux Windows Smart Card

Kernel
space

Storage Management

• Manages and Organizes disk resources
– Includes temporary devices
– CD and DVD drives, thumb drives,

 external drives

• Creates file systems for storing both OS
types of files and user files

• Must somehow keep track of who can
access these files – Access Control

Application Programming
Interface (API)
• Drivers provide for applications to make use

of subsystems without having to know every
detail of internal operations
– Application Program Interfaces (APIs) lets

application programmers use OS functions
without having to directly keep track of details in
CPU's operation

– Hides details of processor and other resources
from program

Application Programming
Interface (API)
• For Example

– Microsoft Word or Open Office Word Processor
– You click, “Save file”
– If didn't have an API

• Word or Open Office would have to know all details of
file system and ultimately call disk controller to create
file on disk

• Instead, language program is written in, C or Java
has a function that is mapped to operating system
API for creating file

User Interface

• User Interface (UI) brings structure to
interaction between user and computer
– In last decade, almost all development in user

interfaces has been in area of graphical user
interface (GUI),

– Provides the “look and feel” of the computer

MAC
OS X

User Interface

Windows Vista

Linux Ubuntu

Max OS X

Further Study Operating Systems

● Please see CSCD340 taught by
 Stu Steiner

● For the BCS … do not have to take this
course

● I highly recommend you take this course
● It is core Computer Science
● Can't really know about developing

applications without knowing about the
Operating System ….

17

OS Design Decisions

• The kernel is the heart of the OS and manages most
of the functionality of the OS including access to
device hardware

• Have been competing designs for the kernel
– Monolithic vs Micro Kernel vs Hybrid Kernel Designs
– These design decisions affect ultimate security of OS

Nice resource for Operating System Concepts
 http://www.brokenthorn.com/Resources/OSDevIndex.html

VS

18

 Operating System Design

19

OS Design Decisions

• Monolithic Design
– Integrate a great deal of functionality into OS

core
– Services are interdependent
– Core system is larger
– Every flaw in system is exposed through

services that depend on that system

20

Monolithic Kernel
 Monolithic kernel where all services
 File system, device drivers as well as core

functionality scheduling, memory allocation are a tight
knit group sharing same space

 Do not confuse term modular kernel to be anything but
monolithic

 Some monolithic kernels can be compiled to be modular
 What matters is that module is inserted to and run from

same space that handles core functionality
 Examples of Monolithic Kernel?
 Linux, BSDs (FreeBSD, OpenBSD, NetBSD),
 Solaris, OS-9, AIX, HP-UX, DOS, Microsoft Windows
 (95,98,Me)

21

Monolithic Kernel Diagram

Kernel
Space

22

Monolithic Kernel Pros and Cons

 Pros

 * More direct access to hardware for programs
 * Easier for processes to communicate between each other
 * If your device is supported, it should work with no additional
 installations
 * Processes react faster because there is more direct access to CPU

 Cons

 * Large install footprint
 * Large memory footprint
 * Less secure because everything runs in supervisor or
 privileged mode

23

Micro Kernel
 A micro kernel
 Core functionality is isolated from system

services and device drivers
 For instance, VFS (virtual file system) and

block device file systems are separate
processes that run outside kernel's space,

– Using IPC to communicate with kernel, other
services and user processes

– IPC means Interprocess Communication
 Example of Micro kernel? Minix

24

Micro Kernel Architecture

Kernel
Mode

25

Micro Kernel Pros and Cons

 Pros
 Portability
 Small memory footprint
 Security Better - not as much runs in supervisor or privileged
 mode

 Cons
 Hardware is more abstracted through drivers
 Hardware may react slower because drivers are in user mode
 Processes have to wait in a queue to get information
 Processes can’t get access to other processes without waiting

26

Hybrid Kernel
 Hybrid kernel is architecture based on combining aspects of

microkernel and monolithic kernel architectures
 A hybrid kernel runs some services in kernel space to reduce

performance overhead of microkernel, while still running kernel
code as “servers” in user space

 For instance, hybrid kernel design may keep Virtual File System
and bus controllers inside kernel and file system drivers and
storage drivers as user mode programs outside the kernel

– Such a design keeps the performance and design
principles of a monolithic kernel.

 Whats an example of a Hybrid kernel?
 Windows NT, Windows 2000, Windows XP, Windows Server 2003,

 Windows Vista, Windows Server 2008 and Windows 7

27

Hybrid Kernel Architecture

28

Hybrid Kernel Pros and Cons
 Pros
 * Developer can pick and choose what runs in user
 mode and what runs in supervisor mode
 * Smaller install footprint than monolithic kernel
 * More flexible than other models

 Cons
 * Can suffer from same process lag as microkernel
 * Device drivers need to be managed by user
 (typically)

Designing for Security

Principles of Secure Design

• Least Privilege
• Fail Safe Defaults
• Economy of Mechanism
• Complete Mediation
• Defense in depth
• Open Design
• Separation of Privilege
• Least Common Mechanism
• Psychological Acceptability

• Where did these principles come from?

Where did the Principles
Originate?

 Multics time-sharing system was an early multi-user system
 put significant effort into ensuring security

 Jerome Saltzer, security researcher, wrote an article outlining the
security mechanisms in Multics Operating system in 1974

 Following year, Saltzer and Michael Schroeder expanded article
into a tutorial titled

 “The Protection of Information in Computer Systems”
(Saltzer and Schroeder, 1975)

 First section of paper introduced “basic principles” of

information protection, including confidentiality, integrity,
and availability, plus a set of design principles

 http://www.cs.virginia.edu/~evans/cs551/saltzer/

Principle of Least Privilege

• A subject should only be given privileges
it needs to complete its task and no more

• Privileges should be controlled by
function, not identity

– Similar to need to know principle from
military secrecy

• System benefits of Least Privilege?

Principle of Least Privilege

 Purpose ...
 As with most security mechanisms, to make it difficult for

unauthorized access to occur
 Without inconveniencing legitimate access
 Need-to-know also aims to discourage

"browsing" of sensitive material by limiting access
to smallest possible number of people.

Principle of Fail-Safe Defaults

• Unless explicit access has been granted, access should
be denied

– Why is this better for security?

Reasons for Fail-Safe Defaults
A conservative design must be based on arguments why
objects should be accessible, rather than why they should
not.
In a large system some objects will be inadequately
considered, so a default of lack of permission is safer

Principle of Fail-Safe Defaults
 From Matt Bishop .. Security Textbook Author, UC

Davis Professor
 “This principle requires that the default access to an object

is none Whenever access, privileges, or some security
related attribute is not explicitly granted, it should be denied”

 Furthermore, if subject is unable to complete its action or
task, before subject terminates, it should undo those
changes it made to the security state of the system. This
way, even if the program fails, the system is still safe “

Principle of Fail-Safe Defaults

Example
 If mail server is unable to create a file in spool

directory, it should close the network connection, issue
an error message, and stop

 It should not try to store the message elsewhere, nor
expand its privileges to save the message in another
location

 Protections on mail spool directory itself should allow
create and write access to only the mail server, and
read and delete access to only the local server

 No other user should have access to the directory

Principle of Economy of
Mechanism
• Security mechanisms should be as simple as

possible. What is the benefit of this?
• The idea behind this principle is that simple

systems tend to be more secure.
• One factor in evaluating a system's security is its

complexity. If the design, implementation, or
security mechanisms are highly complex, then
the likelihood of security vulnerabilities increases

Economy of Mechanism
 This well-known principle applies to any system, but it

deserves emphasis for protection mechanisms for this
reason

 Design and implementation errors that result in
unwanted access paths will not be noticed during
normal use

 Since normal use usually does not include
attempts to exercise improper access paths

 Techniques such as line-by-line inspection of
software and physical examination of hardware that
implements protection mechanisms are necessary

 For such techniques to be successful, a small and
simple design is essential.

Principle of Complete
Mediation
• All accesses to objects must be checked to ensure that they

are still allowed
– Whenever a subject attempts to read an object, the operating

system should mediate the action
– First, it determines if the subject can read the object. If so, it

provides the resources for the read to occur.
– If the subject tries to read the object again
– What should happen?
– System should again check that the subject can still read the

object
– Most systems would not make the second check. They would

cache the results of the first check, and base the second
access upon the cached results

Principle of Complete Mediation

 Example of Violation
 The Directory Name Service (DNS) caches

information mapping hostnames into IP addresses
 If an attacker is able to "poison" the cache by

implanting records associating a bogus IP address
with a name, the host will route connections to that
host incorrectly

Principle of Defense in Depth
• More lines of defense there are against an

attacker,
– Better the defense,
– Additional mechanisms should be different

• Strategy based on military principle that it is more
difficult for an enemy to defeat a complex and
multi-layered defense system than to penetrate a
single barrier

• Can you give an example related to Computer
Security?

Principle of Defense in Depth

• Example: Let's use bank security. Why is typical
bank more secure than the typical convenience
store?

• Because there are many redundant security
measures protecting the bank, and the more
measures there are, the more secure the place is.

• Security cameras alone are a deterrent for some
• But if people don't care about the cameras, then a

security guard is there to physically defend the
bank with a gun.

Principle of Open Design

• Security of a mechanism should not
depend on secrecy of its design or
implementation

 A system relying on security through
obscurity may have theoretical or actual
security vulnerabilities, but its owners or
designers believe that if the flaws are not
known, then attackers will be unlikely to
find them

 Has this proven true in reality?

Principle of Open Design

 Open Source vs. Closed Source
 Article in SC Magazine argues that open

source software is as secure or more secure
than closed source

 Why might this be true?
 http://www.scmagazine.com/open-source-software-is-

more-secure-than-you-think/article/315374/

Principle of Separation of Privilege

• A system should not grant permission based on a
single condition

• Checking access on only one condition may not be
adequate for strong security

• If an attacker is able to obtain one privilege but not a
second, he or she may not be able to launch a
successful attack

• Example
– BSD systems, su users must belong to the wheel group

and know the root password

Principle of Least Common
Mechanism
• Mechanisms to access resources should

not be shared
• Every shared mechanism represents a

potential information path between users
and must be designed with great care to
be sure it does not unintentionally
compromise security

Principle of Least Common
Mechanism
• Example
• A web site provides electronic commerce services for a major company

• Attackers want to deprive company of revenue they obtain from that web
site

• They flood site with messages, and tie up the electronic commerce
services. Legitimate customers are unable to access the web site and, as a
result, take their business elsewhere

• Here, the sharing of the Internet with the attackers' sites caused the attack
to succeed. The appropriate countermeasure would be to restrict the
attackers access to the segment of the Internet connected to the web site.
Techniques such as proxy servers or traffic throttling would help

Principle of Psychological
Acceptability
• Security mechanisms should not make it more

difficult to access a resource.
• If security mechanisms hinder usability or

accessibility of resources, then users may opt to
turn off those mechanisms

• Where possible, security mechanisms should be
transparent to the users of the system or at most
introduce minimal obstruction

• Is this principle followed in most Operating
Systems?

Summary

 Operating Systems by design
helps or hinders security

 Want concepts of security design
implemented as much as possible
in most of the systems we use …

 Up to developers to design security
in from the beginning

50

The End

• Next Time: Vulnerabilities
• Lab: Kali Linux

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

